
IDL Version 5.4
September, 2000 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

What’s New
in IDL 5.4

Restricted Rights Notice
The IDL® software program and the accompanying procedures, functions, and documenta-
tion described herein are sold under license agreement. Their use, duplication, and disclo-
sure are subject to the restrictions stated in the license agreement. Research Systems, Inc.,
reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty
Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of
the software, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages
suffered by the Licensee or any others resulting from use of the IDL software package or its
documentation.

Permission to Reproduce this Manual
If you are a licensed user of this product, Research Systems, Inc. grants you a limited, non-
transferable license to reproduce this particular document provided such copies are for your
use only and are not sold or distributed to third parties. All such copies must contain the
title page and this notice page in their entirety.

Acknowledgments
IDL® is a registered trademark of Research Systems Inc., registered in the United States Patent and Trademark Office, for
the computer program described herein. Software ≡ Vision™ is a trademark of Research Systems, Inc.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permis-
sion.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright © 1988-1998 The Board of Trustees of the University of Illinois
All rights reserved.

CDF Library
Copyright © 1999
National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

This product contains StoneTable™, by StoneTablet Publishing. All rights to StoneTable™ and its documentation are
retained by StoneTablet Publishing, PO Box 12665, Portland OR 97212-0665. Copyright © 1992-1997 StoneTablet Publish-
ing

WASTE text engine © 1993-1996 Marco Piovanelli

Portions of this software are copyrighted by INTERSOLV, Inc., 1991-1998.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents
Chapter 1:
Overview of New Features in IDL 5.4 .. 7
Visualization Enhancements in IDL .. 8
Analysis Enhancements in IDL 5.4 ... 17
IDL Language Enhancements .. 31
LZW/GIF No Longer Supported in IDL .. 41
File I/O Enhancements ... 43
Development Environment Enhancements .. 46
Installation and Licensing Enhancements .. 54
Application Development Enhancements .. 57
IDL Wavelet Toolkit Enhancements ... 59
New and Enhanced IDL Utilities ... 62
New and Enhanced IDL Objects .. 66
New and Enhanced IDL Routines .. 88
New and Updated System Variables .. 126
What’s New in IDL 5.4 3

4

Features Obsoleted in IDL 5.4 ... 128
Platforms Supported in this Release .. 134

Chapter 2:
Date/Time Plotting in IDL ... 135
Overview .. 136
How to Generate Date/Time Data ... 138
Displaying Date/Time Data on an Axis in Direct Graphics .. 140
Displaying Date/Time Data on an Axis in Object Graphics .. 148

Chapter 3:
New IDL Routines ... 157
ARRAY_EQUAL .. 158
BESELK .. 159
BREAK .. 161
COLORMAP_APPLICABLE ... 162
CONTINUE ... 163
FILE_CHMOD .. 164
FILE_DELETE .. 168
FILE_EXPAND_PATH .. 170
FILE_MKDIR .. 172
FILE_TEST ... 173
FILE_WHICH ... 177
HOUGH ... 179
LAGUERRE .. 187
LEGENDRE .. 189
MAKE_DLL .. 192
MAP_2POINTS ... 201
MATRIX_MULTIPLY ... 205
MEMORY ... 207
RADON ... 210
SAVGOL ... 219
SOCKET .. 223
SPHER_HARM ... 227
SWITCH .. 230
TIMEGEN ... 232
WV_CWT .. 237
Contents What’s New in IDL 5.4

5

WV_DENOISE .. 239
WV_FN_GAUSSIAN .. 243
WV_FN_MORLET ... 246
WV_FN_PAUL ... 249
XDXF ... 252
XPCOLOR ... 256
XPLOT3D .. 257
XROI .. 264
XVOLUME .. 273

Chapter 4:
New Objects .. 279
IDLffShape .. 280

Index .. 313
What’s New in IDL 5.4 Contents

6

Contents What’s New in IDL 5.4

Chapter 1:

Overview of New
Features in IDL 5.4

This chapter contains the following topics:
Visualization Enhancements in IDL 8
Analysis Enhancements in IDL 5.4 17
IDL Language Enhancements 31
LZW/GIF No Longer Supported in IDL . . . 41
File I/O Enhancements 43
Development Environment Enhancements . 46
Installation and Licensing Enhancements . . 54
Application Development Enhancements . . 57

IDL Wavelet Toolkit Enhancements 59
New and Enhanced IDL Utilities 62
New and Enhanced IDL Objects 66
New and Enhanced IDL Routines 88
New and Updated System Variables 126
Features Obsoleted in IDL 5.4 128
Platforms Supported in this Release 134
What’s New in IDL 5.4 7

8 Chapter 1: Overview of New Features in IDL 5.4
Visualization Enhancements in IDL

The following enhancements have been made in the area of Visualization in the IDL
5.4 release:

• New Visualization Utilities

• Double-Precision Support for Visualization

• Enhanced Date/Time Support for Plotting in IDL

• Elimination of Limits on the Number of Contour Levels

• Improved Preview Functionality for PostScript Files

• New Printer Support for UNIX Platforms

• Windows Metafile Format (WMF) Support for Direct Graphics

• New Reverse Axis Plotting Example for Object Graphics

• Ability to Specify Values in Points for the IDLgrPattern Object

New Visualization Utilities

IDL 5.4 now contains new visualization utilities which can be used as stand-alone
applications tools which help you create applications. These utilities can also be
embedded within IDL applications that you develop.

For more information, see “New and Enhanced IDL Utilities” on page 62.

Double-Precision Support for Visualization

IDL routines and objects that can be used for visualization now accept double-
precision data without converting it to single-precision. This allows for greater
precision and flexibility when visualizing data. For routines that can return an array
of data, a keyword has been added to allow you to choose between the default single-
precision and an optional double-precision.

The following is a simple example of how double-precision data can now be
displayed in IDL plotting:

PRO dp_plot_example

DEVICE, RETAIN=2, DECOMPOSED=0
!P.BACKGROUND=255
!P.COLOR=0
Visualization Enhancements in IDL What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 9
secPerYear = 365.24d*86400
time = [1d-43, 1d-35, 1d-12, 1d-6, 0.01, 1, 15, 180, 210, $
1d6*secPerYear, 1d10*secPerYear]
temperature = [1d32, 1d27, 1d15, 1d13, 1d11, 1d10, 3d9, 1d9, 1d8, $
4000, 2.725]

WINDOW, 0, xsize=400, ysize=300
PLOT, time, temperature, /NOCLIP, $

PSYM = -2, XSTYLE = 1, YSTYLE = 1, /XLOG, /YLOG, $
YRANGE = [1,1d33], XTICKS = 6,$
XTICKV = [1d-43,1d-30,1d-20,1d-10,1,1d10,1d20], $
XTITLE = 'Time since Big Bang (sec)', $
YTITLE = 'Temperature (K)', $
TITLE = 'Temperature of the Universe'

END

This results in the following plot:

IDL System Variables Now Supporting Double Precision

The following IDL system variable fields now support double precision:

Figure 1-1: Double-Precision Plotting in IDL

• !P.T

• ![XYZ].CRANGE

• ![XYZ].RANGE
What’s New in IDL 5.4 Visualization Enhancements in IDL

10 Chapter 1: Overview of New Features in IDL 5.4
For more information on specific changes to these IDL System Variables, see “New
and Updated System Variables” on page 126.

IDL Routines Now Supporting Double Precision

The following IDL routines now support double precision:

For more information on specific changes to these IDL routines, see “New and
Updated Keywords/Arguments to IDL Routines” on page 91.

IDL Objects Now Supporting Double Precision

The following IDL objects now support double precision:

• ![XYZ].S

• ![XYZ].TICKFORMAT

• ![XYZ].TICKV

• AXIS • LIVE_CONTOUR • T3D

• CONVERT_COORD • LIVE_PLOT • TV

• CONTOUR • LIVE_SURFACE • TVCRS

• COORD2TO3 • PLOT • TVSCL

• CREATE_VIEW • PLOTS • VERT_T3D

• CURSOR • POLYFILL • XOBJVIEW

• DRAW_ROI • POLYSHADE • XYOUTS

• ISOCONTOUR • SURFACE

• OPLOT • SHADE_SURF

• IDLanROI • IDLgrLight • IDLgrSurface

• IDLanROIGroup • IDLgrModel • IDLgrText

• IDLgrAxis • IDLgrPlot • IDLgrView

• IDLgrBuffer • IDLgrPolygon • IDLgrVolume

• IDLgrColorbar • IDLgrPolyline • IDLgrVRML

• IDLgrContour • IDLgrPrinter • IDLgrWindow
Visualization Enhancements in IDL What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 11
For more information on specific changes to IDL Objects, see “New and Updated
Keywords/Arguments to IDL Object Methods” on page 67.

IDL Utilities Now Supporting Double Precision

The following IDL system utility now supports double precision:

• XOBJVIEW

For more information on specific changes to XOBJVIEW, see “New
Keywords/Arguments to Existing IDL Utilities” on page 64.

• IDLgrImage • IDLgrROI

• IDLgrLegend • IDLgrROIGroup
What’s New in IDL 5.4 Visualization Enhancements in IDL

12 Chapter 1: Overview of New Features in IDL 5.4
Enhanced Date/Time Support for Plotting in IDL

IDL routines and objects used for plotting have been enhanced to make it easier to
display date/time data along axis. The following figure shows an example of the
capabilities of the new date/time support:

The enhancements for date/time support for plotting in IDL are:

• A new TIMEGEN array creation routine — The new TIMEGEN function
returns an array (with the specified dimensions) of double-precision floating-
point values that represent times by Julian dates.

• New date/time keywords for IDL Direct Graphics — Four keywords have
been modified or added to Direct Graphics routines to provide improved
capabilities for date/time axis labeling. These keywords are: TICKLAYOUT,
TICKUNITS, TICKINTERVAL, and TICKFORMAT.

Figure 1-2: New Date/Time Display Along Axis
Visualization Enhancements in IDL What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 13
• New date/time keywords for IDL Object Graphics — Four keywords have
been modified or added to the IDLgrAxis class to provide improved
capabilities for date/time axis labeling. The keywords are: TICKLAYOUT,
TICKUNITS, TICKINTERVAL, and TICKFORMAT.

• New Fields for the !X, !Y, and !Z system variables — These new fields
provide easier date/time axis labeling capabilities. They are: TICKLAYOUT,
TICKUNITS, TICKINTERVAL.

• Improvements to LABEL_DATE — The LABEL_DATE routine now accepts
format strings that include codes for sub-seconds. Also, LABEL_DATE will
accept an array of DATE_FORMATS and a Level argument so that it may be
used for multi-level date/time axes.

For more information on date/time support, see Chapter 2, “Date/Time Plotting in
IDL”.

Elimination of Limits on the Number of Contour Levels

Previous to this release, the CONTOUR routine has been limited to a fixed number of
levels (most recently 60) that can be rendered. This limitation has now been removed.
CONTOUR will now accept vectors that contain more than 60 elements for each of
the C_* keywords (C_ANNOTATION, C_COLORS, C_LABELS, C_LINESTYLE,
C_ORIENTATION, C_SPACING, and C_THICK) as well as for the LEVELS
keyword. The NLEVELS keyword may now be set to a value greater than 60.

Improved Preview Functionality for PostScript Files

In IDL 5.4, you now have the ability to specify the resolution of the preview when
creating a PostScript or an Encapsulated PostScript file. You can now specify the
width, height, and depth of the preview with the new PRE_XSIZE, PRE_YSIZE, and
PRE_DEPTH keywords to the DEVICE routine.

For more information on specific changes to IDL Objects, see “New and Updated
Keywords/Arguments to IDL Routines” on page 91.
What’s New in IDL 5.4 Visualization Enhancements in IDL

14 Chapter 1: Overview of New Features in IDL 5.4
New Printer Support for UNIX Platforms

In IDL 5.4, the Xprinter (UNIX printer support) has been upgraded to version 3.3.
This provides the following added functionality:

• Support for the following printer models with the addition of the associated
PPD files:

• Support for advanced features such as 1200 DPI, duplex printing, and multiple
paper tray features on printers that provide these capabilities.

• Support for PostScript Level II compression.

Note
For more information on Bristol’s XPrinter 3.3 visit the Bristol web site at:
http://www.bristol.com

Windows Metafile Format (WMF) Support for Direct Graphics

IDL now supports writing to the Windows Metafile Format (WMF). This format is
used by Windows to store vector graphics in order to exchange graphics information
between applications. This format is only available on Windows platforms.

To write to this format, you use the SET_PLOT procedure and specify ‘METAFILE’
as the device. You can then use the DEVICE procedure to modify the attributes of the
file. The following DEVICE keywords are supported for Metafile:

HP LaserJet 4Si MX PS 600 dpi HP LaserJet 8000

HP LaserJet 5/5M PostScript Tektronix 560

HP LaserJet 5P/5MP Lexmark Optra S 2455

HP LaserJet 5Si Lexmark Optra Color 1200

HP LaserJet 4000

CLOSE_FILE INDEX_COLOR

FILENAME SET_CHARACTER_SIZE

GET_CURRENT_FONT SET_FONT

GET_FONTNAMES TRUE_COLOR
Visualization Enhancements in IDL What’s New in IDL 5.4

http://www.bristol.com

Chapter 1: Overview of New Features in IDL 5.4 15
For example, the following will create a WMF file for a simple plot:

;Create X and Y Axis data
x=findgen(10)
y=findgen(10)

;Save current device name
mydevice=!D.NAME

;Set the device to Metafile
SET_PLOT, 'METAFILE'

;Name the file to be created
DEVICE, FILE='test.emf'

;Create the plot
PLOT, x, y

;Close the device which creates the Metafile
DEVICE, /CLOSE

;Set the device back to the original
SET_PLOT, mydevice

New Reverse Axis Plotting Example for Object Graphics

A new example has been included with IDL to show how to reverse the order of axis
tick values using Object Graphics. You can run this example by entering
EX_REVERSE_PLOT.PRO at the IDL command line. You can view the source for this
example, EX_REVERSE_PLOT.PRO, in the examples/visual directory.

GET_FONTNUM TT_FONT

GLYPH_CACHE XSIZE

INCHES YSIZE
What’s New in IDL 5.4 Visualization Enhancements in IDL

16 Chapter 1: Overview of New Features in IDL 5.4
Ability to Specify Values in Points for the IDLgrPattern
Object

Previously, IDLgrPattern has used a pattern description that is defined in terms of
pixels units. To facilitate “what you see is what you get” (WYSIWYG) behavior, the
units of measure for the PATTERN, SPACING and THICK keywords will now be
points (rather than pixels). With this new functionality, it is easy to re-use the same
pattern on more than one destination device (even if the destinations have varying
resolutions).

Figure 1-3: Reverse Axis Plotting Example
Visualization Enhancements in IDL What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 17
Analysis Enhancements in IDL 5.4

The following enhancements have been made in the area of Analysis in the IDL 5.4
release:

• Improved FFT Performance

• New Hough and Radon Transform Functions

• New Legendre Polynomial Functions

• New Laguerre Polynomial Function

• New Savitzky-Golay Smoothing Filter

• New MAP_2POINTS Function

• Enhanced IBETA and IGAMMA Functions

• Enhanced ROBERTS and SOBEL Functions

• Enhancement to Bessel Functions

• Ability to Retrieve the Number of Vertices in IDLanROI

• Enhanced MIN_CURVE_SURF Function

• Enhanced Probability Functions

• Enhanced TRIGRID Function

• Enhanced Integration Functions

• Enhanced FACTORIAL Function

• Enhanced HISTOGRAM Function

• Enhanced Curve-Fitting Functions

Improved FFT Performance

The FFT function now uses an improved algorithm that is more efficient at handling
data sets with a length containing powers of 2, 3, or 5. The FFT function in previous
versions of IDL only took advantage of data lengths that are powers of 2. The new
FFT algorithm extends this advantage to powers of 3 and 5. The new FFT
performance is up to three times faster for data sets rich in powers of 2, 3, or 5,
depending on the data set size and platform. In addition, the new FFT is more
What’s New in IDL 5.4 Analysis Enhancements in IDL 5.4

18 Chapter 1: Overview of New Features in IDL 5.4
accurate for primes and powers of 2, and more memory efficient, requiring half the
memory for some data sets.

Note
You may notice a negligible difference in results from the FFT function in previous
versions of IDL.

New Hough and Radon Transform Functions

The new HOUGH and RADON functions have been added to IDL. The Hough (P. V.
C. Hough, 1962) and Radon (J. Radon, 1917) transforms are used to detect lines
within two-dimensional images. The Hough transform maps each image pixel into a
sinusoid within the Hough domain, while the Radon transform maps lines within an
image into a single pixel within the Radon domain. Both transforms are widely used
for image processing, remote sensing, computer vision, and seismic analysis. The
Hough transform, in particular, can be used for automatic extraction and
classification of features in satellite images. The Radon transform is used in
computed tomography (CT) to reconstruct two-dimensional tissue slices from a
series of X-ray projections.

The following figure shows an example of the use of the new HOUGH function. The
top image shows three lines drawn within a random array of pixels that represent
noise. The center image shows the Hough transform, displaying sinusoids for points
that lie on the same line in the original image. The bottom image shows the Hough
backprojection, after setting the threshold to retain only those lines that contain more
than 20 points. The Hough inverse transform, or backprojection, transforms each
point in the Hough domain into a straight line in the image.
Analysis Enhancements in IDL 5.4 What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 19
The next figure shows an example of the use of the new RADON function. The top
image is an image of a ring and random pixels, or noise. The center image is the
Radon transform, and displays the line integrals through the image. The bottom
image is the Radon backprojection, after filtering all noise except for the two strong
horizontal stripes in the middle image.

Figure 1: HOUGH example showing random pixels (top), Hough transform
(center) and Hough backprojection (bottom)
What’s New in IDL 5.4 Analysis Enhancements in IDL 5.4

20 Chapter 1: Overview of New Features in IDL 5.4
Figure 2: Radon Example - Original image (top), Radon transform (center), and
backprojection of the filtered RADON transform (bottom)
Analysis Enhancements in IDL 5.4 What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 21
New Legendre Polynomial Functions

Two new functions have been added to IDL for evaluation of Legendre polynomials:

New Laguerre Polynomial Function

The LAGUERRE function has been added to IDL for the evaluation of Laguerre
polynomials. Laguerre polynomials are used in quantum mechanics, for example,
where the wave function for the hydrogen atom is given by the Laguerre differential
equation.

New Savitzky-Golay Smoothing Filter

The new SAVGOL function returns the coefficients of a Savitzky-Golay smoothing
filter, which can then be applied using the CONVOL function. The Savitzky-Golay
smoothing filter, also known as least squares or DISPO (digital smoothing
polynomial), can be used to smooth a noisy signal.

The following figure illustrates the new SAVGOL function. In this example, we have
created a noisy 400-point vector with 4 Gaussian peaks of decreasing width. Then,
we plot the vector smoothed with a 33-point boxcar smoother (the SMOOTH
function), the vector smoothed with 33-point wide Savitzky-Golay filter of degree 4,
and finally the first derivative of the noisy signal and the first derivative using the
Savitzky-Golay filter of degree 4. Notice how the Savitzky-Golay filter preserves the
high peaks but does not do as much smoothing on the flatter regions, and how the
filter is able to construct a good approximation of the first derivative.

Function Description

LEGENDRE The LEGENDRE function returns the value of the
associated Legendre polynomial.

SPHER_HARM The SPHER_HARM function returns the value of the
spherical harmonic, which is a function of two
coordinates on a spherical surface.

Table 1-1: New Legendre Polynomial Functions
What’s New in IDL 5.4 Analysis Enhancements in IDL 5.4

22 Chapter 1: Overview of New Features in IDL 5.4
New MAP_2POINTS Function

The new MAP_2POINTS function has been added to IDL to return parameters such
as distance, azimuth, and path relating to the great circle or rhumb line connecting
two points on a sphere.

Enhanced IBETA and IGAMMA Functions

The following enhancements have been made to the IBETA and IGAMMA
functions:

• The functions now work on arrays as well as scalars (provided the arrays have
the same size).

• The functions now fully support double-precision.

• The new EPS and ITMAX keywords allow the user to specify the desired
accuracy and number of iterations, respectively.

For more information on specific changes to IBETA and IGAMMA, see “New and
Updated Keywords/Arguments to IDL Routines” on page 91.

Figure 1-4: New Savitzky-Golay Smoothing Filter
Analysis Enhancements in IDL 5.4 What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 23
Enhanced ROBERTS and SOBEL Functions

The ROBERTS and SOBEL functions have been enhanced such that the resulting
image array has the same dimensions and data type as the original array. In previous
versions of IDL, the resulting image array was returned as type INT, regardless of the
data type of the original array.

Enhancement to Bessel Functions

The Bessel functions, BESELI, BESELJ, and BESELY, have been modified to
accept non-integer orders. Also, the new BESELK function has been added.

Ability to Retrieve the Number of Vertices in IDLanROI

You can now retrieve the number of vertices being used by a region in an IDLanROI
object. The N_VERTS keyword, used to represent the number of vertices, has been
added to the IDLanROI::GetProperty method to specify a named variable that will
contain the number of vertices currently being used by the region.

For more information on specific changes to IDL Objects, see “New and Updated
Keywords/Arguments to IDL Object Methods” on page 67.

Enhanced MIN_CURVE_SURF Function

The SPHERE and CONST keywords have been added to the MIN_CURVE_SURF
function to support minimum curvature surface interpolation over a sphere.

For more information on specific changes to MIN_CURVE_SURF, see “New and
Updated Keywords/Arguments to IDL Routines” on page 91.

Enhanced Probability Functions

The CHISQR_PDF, F_PDF, GAUS_PDF, and T_PDF functions have been enhanced
to accept array values for all arguments.

Enhanced TRIGRID Function

The TRIGRID function has been enhanced to allow specification of irregularly
spaced rectangular output grids. The new XOUT and YOUT keywords can be set to
vectors specifying the output grid X and Y values.

Enhanced Integration Functions

The QROMB, QROMO, and QSIMP functions are now fully re-entrant, and can be
called from within the user-supplied integration functions. This allows you to
What’s New in IDL 5.4 Analysis Enhancements in IDL 5.4

24 Chapter 1: Overview of New Features in IDL 5.4
perform double (or multiple) integration by calling QROMB with a user-supplied
IDL function that calls QROMB within itself.

Enhanced FACTORIAL Function

The FACTORIAL function now accepts input as either a scalar or an array.
Additionally, the new UL64 keyword has been added so that the results can be
returned as unsigned 64-bit integers.

Enhanced HISTOGRAM Function

The NBINS keyword has been added to the HISTOGRAM function to allow the user
to explicitly specify the number of bins to use.

Enhanced Curve-Fitting Functions

Several curve-fitting routines have been modified to make them consistent with one
another, to correct the value returned by the SIGMA keyword, and to add
functionality. The following changes have been made:

LINFIT

• For consistency with other curve-fitting routines, the COVAR and YFIT
output keywords have been added.

• For consistency with other curve-fitting routines, the SDEV keyword has been
replaced by MEASURE_ERRORS, which has the same definition and
meaning as SDEV. For backwards compatibility, the SDEV keyword is still
accepted, but new code should use the MEASURE_ERRORS keyword.

LMFIT

• The definition of the SIGMA keyword has changed. If you do not specify error
estimates (via the MEASURE_ERRORS keyword), then you are assuming
that your user-supplied model (or the default quadratic), is the correct model
for your data, and therefore, no independent goodness-of-fit test is possible. In
this case, the values returned in SIGMA are multiplied by the correction factor
SQRT(CHISQ/(N–M)), where N is the number of points in X, and M is the
number of coefficients. In versions of IDL prior to 5.4, this correction factor
was not being applied. For example, the following code yields different results
in IDL 5.3 and IDL 5.4:

; Define an 11-element vector of independent variable data:
X = DINDGEN(11)
Analysis Enhancements in IDL 5.4 What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 25
; Define an 11-element vector of dependent variable data:
Y = 3 - 4*x + 5*x^2 + 0.5*randomn(1,11)

; Compute fit:
A = [0, 0, 0]
result = LMFIT(X, Y, A, SIGMA=sigma)
PRINT, 'Coefficients: ', A
PRINT, 'Standard errors: ', sigma

IDL 5.3 prints incorrect results:

Coefficients: 2.8768212 -3.9525263 5.0026831
Standard errors: 0.76185273 0.35445878 0.034139437

IDL 5.4 prints the correct results:

Coefficients: 2.8768212 -3.9525263 5.0026831
Standard errors: 0.28439646 0.13231799 0.012744110

For more information, see section 15.2 of Numerical Recipes in C (Second
Edition).

• The WEIGHTS keyword is obsolete and has been replaced by the
MEASURE_ERRORS keyword. Code that uses the WEIGHTS keyword will
continue to work as before, but new code should use the
MEASURE_ERRORS keyword. Note that the definition of the
MEASURE_ERRORS keyword is not the same as the WEIGHTS keyword.
Using the WEIGHTS keyword, SQRT(1/WEIGHTS[i]) represents the
measurement error for each point Y[i]. Using the MEASURE_ERRORS
keyword, the measurement error for each point is represented as simply
MEASURE_ERRORS[i]. The following code demonstrates the difference
between the use of the old WEIGHTS keyword and the new
MEASURE_ERRORS keyword:

Assume we have the following data and measurement errors:

; Define an 11-element vector of independent variable data:
X = FINDGEN(11)

; Define an 11-element vector of dependent variable data:
Y = 3 - 4*x + 5*x^2

; Assume Gaussian measurement errors for each point:
measure_errors = REPLICATE(0.5, 11)

Using the obsolete WEIGHTS keyword, we would compute the fit as follows:

A = [0, 0, 0]
result = LMFIT(X, Y, A, WEIGHTS=1/measure_errors^2,SIGMA=sigma)
What’s New in IDL 5.4 Analysis Enhancements in IDL 5.4

26 Chapter 1: Overview of New Features in IDL 5.4
PRINT, 'Coefficients: ', A
PRINT, 'Standard errors: ', sigma

Using the new MEASURE_ERRORS keyword, we now compute the fit as
follows. Note that the same measurement errors are used:

A = [0, 0, 0]
result = LMFIT(X, Y, A, MEASURE_ERRORS=measure_errors, $

SIGMA=sigma)
PRINT, 'Coefficients: ', A
PRINT, 'Standard errors: ', sigma

In both cases, IDL prints:

Coefficients: 2.99998 -3.99999 5.00000
Standard errors: 0.380926 0.177229 0.0170697

POLY_FIT

• A new MEASURE_ERRORS keyword has been added to POLY_FIT,
replacing the POLYFITW function. Note, however, that the definition of the
MEASURE_ERRORS keyword to POLY_FIT is different from the definition
of the Weights argument to POLYFITW. In POLYFITW, SQRT(1/Weights[i])
represented the measurement error for each point Y[i]. Now, for consistency
with other curve-fitting routines, POLY_FIT defines the measurement error
for each point as MEASURE_ERRORS[i]. Code using POLYFITW will
continue to work as before, but new code should use POLY_FIT. If you wish
to convert existing code using POLYFITW to use the new
MEASURE_ERRORS keyword to POLY_FIT, you must change the values
you supply. For example, assume we have the following data and
measurement errors:

; Define an 11-element vector of independent variable data:
X = FINDGEN(11)

; Define an 11-element vector of dependent variable data:
Y = 3 - 4*x + 5*x^2

; Assume Gaussian measurement errors of 0.5 for each point:
measure_errors = REPLICATE(0.5, 11)

To compute the weighted second degree polynomial fit using POLYFITW:

weight = 1/measure_errors^2
result = POLYFITW(X, Y, weight, 2)
PRINT, 'Coefficients: ', result[*]

Using the improved POLY_FIT function, we can compute the fit as follows:
Analysis Enhancements in IDL 5.4 What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 27
; Compute using the improved POLY_FIT routine:
result = POLY_FIT(X, Y, 2, MEASURE_ERRORS = measure_errors)

 PRINT, 'Coefficients: ', result[*]

In both cases, IDL prints:

Coefficients: 3.00032 -4.00015 5.00002

• The Yfit argument to POLY_FIT is now a keyword YFIT. For backwards
compatibility, the argument will still be accepted.

• The Yband argument to POLY_FIT is now a keyword YBAND. For
backwards compatibility, the argument will still be accepted.

• The Sigma argument to POLY_FIT is now a keyword YERROR. For
backwards compatibility, the argument will still be accepted. Note that the
description of the argument Sigma incorrectly stated that Sigma was the
“standard deviation of the returned coefficients.” Actually, Sigma (now
keyword YERROR) is the standard error between YFIT and Y.

• The Corrm argument to POLY_FIT is now a keyword COVAR. For
backwards compatibility, the argument will still be accepted. Note that the
description of the argument Corrm stated that Corrm was the “correlation
matrix.” Actually, Corrm (now keyword COVAR) is the covariance matrix.

• POLY_FIT now returns the fit parameters CHISQ and SIGMA, which give the
chi-square goodness-of-fit and the standard deviation of the returned
coefficients, respectively.

• A new STATUS keyword has been added to POLY_FIT to allow the function
to return a status value that can be used to programmatically determine
whether the operation was successful.

POLYFITW

The POLYFITW function is obsolete, and has been replaced by the
MEASURE_ERRORS keyword to POLY_FIT.

REGRESS

• For consistency with the other curve-fitting routines, the arguments Weights,
Yfit, Const, Sigma, Ftest, R, Rmul, Chisq, and Status are now keywords
MEASURE_ERRORS, YFIT, CONST, SIGMA, FTEST, CORRELATION,
MCORRELATION, CHISQ, and STATUS, respectively. The arguments are
still supported for backward compatibility, but new code should use the
keywords instead.
What’s New in IDL 5.4 Analysis Enhancements in IDL 5.4

28 Chapter 1: Overview of New Features in IDL 5.4
• The definition of the MEASURE_ERRORS keyword is different from the
Weights argument that it has replaced. Using the Weights argument,
SQRT(1/Weights[i]) represents the measurement error for each point Y[i].
Now, for consistency with other curve-fitting routines, the measurement error
for each point is represented as simply MEASURE_ERRORS[i]. Also, the
RELATIVE_WEIGHT keyword is no longer necessary. Now, if the
MEASURE_ERRORS keyword is not provided, then REGRESS assumes you
want no weighting.

Assume we have the following data:

; Create two vectors of independent variable data:
X1 = [1.0, 2.0, 4.0, 8.0, 16.0, 32.0]
X2 = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0]
; Combine into a 2x6 array
X = [TRANSPOSE(X1), TRANSPOSE(X2)]

; Create a vector of dependent variable data:
Y = 5 + 3*X1 - 4*X2

The following examples illustrate the difference between the old method and
the new method, with and without weighting:

No weighting:

; Old method:
Weights = REPLICATE(1.0, N_ELEMENTS(Y))
; Compute the fit using multiple linear regression:
result = REGRESS(X, Y, Weights, yfit, const, Sigma, $

/RELATIVE_WEIGHT)
PRINT, 'Coefficients: ', result[*]
PRINT, 'Standard errors: ', sigma

; New method. Note that the Weights arguments and
; RELATIVE_WEIGHT keyword are not needed:
result = REGRESS(X, Y, SIGMA=sigma)

PRINT, 'COEFFICIENTS: ', result[*]
PRINT, 'Standard errors: ', sigma

 In both cases, IDL prints:

Coefficients: 3.00000 -3.99999
Standard errors: 1.38052e-006 8.75298e-006

Weighting:

; Assume Gaussian measurement errors for each point:
measure_errors = REPLICATE(0.5, N_ELEMENTS(Y))
Analysis Enhancements in IDL 5.4 What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 29
; Old method:

Weights = 1/measure_errors^2
; Compute the fit using multiple linear regression:
result = REGRESS(X, Y, Weights, Yfit, Const, Sigma)
PRINT, 'Coefficients: ', result[*]
PRINT, 'Standard errors: ', Sigma

; New method. Note the change in definition of Weights:

weights = 1/measure_errors
result = REGRESS(X, Y, SIGMA=sigma, $

MEASURE_ERRORS=measure_errors)
PRINT, 'Coefficients: ', result[*]
PRINT, 'Standard errors: ', sigma

In both cases, IDL prints:

Coefficients: 3.00000 -3.99999
Standard errors: 0.0444831 0.282038

SVDFIT

• The definition of the SIGMA keyword has changed. If you do not specify error
estimates (via the MEASURE_ERRORS keyword), then you are assuming
that the polynomial (or your user-supplied model) is the correct model for your
data, and therefore, no independent goodness-of-fit test is possible. In this
case, the values returned in SIGMA are multiplied by the correction factor
SQRT(CHISQ/(N–M)), where N is the number of points in X, and M is the
number of coefficients. In versions of IDL prior to 5.4, this correction factor
was not being applied. For example, the following code yields different results
in IDL 5.3 and IDL 5.4:

; Define an 11-element vector of independent variable data:
X = FINDGEN(11)

; Define an 11-element vector of dependent variable data:
Y = 3 - 4*x + 5*x^2 + 0.5*randomn(1,11)

; Compute the quadratic fit:
result = SVDFIT(X, Y, 3, SIGMA=sigma)
PRINT, 'Coefficients: ', result
PRINT, 'Standard errors: ', sigma

IDL 5.3 prints incorrect results:

Coefficients: 2.87686 -3.95254 5.00268
Standard errors: 0.761852 0.354459 0.0341395
What’s New in IDL 5.4 Analysis Enhancements in IDL 5.4

30 Chapter 1: Overview of New Features in IDL 5.4
IDL 5.4 prints the correct results:

Coefficients: 2.87680 -3.95253 5.00268
Standard errors: 0.284396 0.132318 0.0127441

For more information, see section 15.2 of Numerical Recipes in C (Second
Edition).

• The WEIGHTS keyword is obsolete and has been replaced by the
MEASURE_ERRORS keyword. Code that uses the WEIGHTS keyword will
continue to work as before, but new code should use the
MEASURE_ERRORS keyword. Note that the definition of the
MEASURE_ERRORS keyword is not the same as the WEIGHTS keyword.
Using the WEIGHTS keyword, 1/WEIGHTS[i] represents the measurement
error for each point Y[i]. Using the MEASURE_ERRORS keyword, the
measurement error is represented as simply MEASURE_ERRORS[i]. The
following code demonstrates the difference between the use of the old
WEIGHTS keyword and the new MEASURE_ERRORS keyword:

Assume we have the following data and measurement errors:

; Define an 11-element vector of independent variable data:
X = FINDGEN(11)

; Define an 11-element vector of dependent variable data:
Y = 3 - 4*x + 5*x^2

; Assume Gaussian measurement errors for each point:
measure_errors = REPLICATE(0.5, 11)

Using the obsolete WEIGHTS keyword, we would compute the fit as follows:

A = [0, 0, 0]
result = SVDFIT(X, Y, A=A, WEIGHTS=1/measure_errors, $

SIGMA=sigma)
PRINT, 'Coefficients: ', A
PRINT, 'Standard errors: ', sigma

Using the new MEASURE_ERRORS keyword, we now compute the fit as
follows. Note that the same measurement errors are used:

A = [0, 0, 0]
result = SVDFIT(X, Y, A=A, MEASURE_ERRORS=measure_errors, $
 SIGMA=sigma)
PRINT, 'Coefficients: ', A
PRINT, 'Standard errors: ', sigma
Analysis Enhancements in IDL 5.4 What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 31
IDL Language Enhancements

The following enhancements have been made to the IDL language in the IDL 5.4
release:

• Large File Support for Windows Platforms

• New 64-Bit Memory Support

• New Support for Reading Compressed Files with Associated Variables

• New File Handling Routines

• New Date Attributes for Retrieving File Status

• New Support for Converting System Times

• Improvements for Formatted Input Using READ and READF

• New Function for Testing Equality of Arrays

• New Function for Multiplying Transposed Arrays

• New Program Control Statements

• Enhanced RESOLVE_ROUTINE Function

• CALL_EXTERNAL Enhancement to Automatically Write and Compile
Intermediate Glue Code on the Fly

• Enhanced Ability for Spawning Processes

• New Support for TCP/IP Client Side Sockets

• New Altivec Support for Macintosh

• Relaxed Rules for Combining Structures

• New C printf-Style Quoted String Format Code

• Enhanced WHERE Function

Large File Support for Windows Platforms

IDL 5.4 now supports accessing files larger than 2.1 GB on the Windows platform.
You now can use the 64-bit integer data type to read and write data from files on the
following platforms that support the use of a large file capable file system:

• Windows 95, 98, NT 4.0, 2000 (with NTFS)
What’s New in IDL 5.4 IDL Language Enhancements

32 Chapter 1: Overview of New Features in IDL 5.4
• SUN Solaris (Intel and SPARC systems)

• HP-UX

• SGI Irix

• Compaq Tru64 UNIX

When reading and writing to files smaller than 2.1 GB, IDL uses longword integers
for file position arguments (e.g. POINT_LUN, FSTAT) and keywords. When
accessing files larger than 2.1 GB, IDL will automatically use signed 64-bit integers
in order to be able to properly represent the offset.

New 64-Bit Memory Support

IDL 5.4 now provides 64-bit memory support on some platforms which allows you to
create individual variables that exceed 2.1 GB in size. You can freely exchange .sav
files between 64-bit and 32-bit versions of IDL with the exception that the 32-bit
version of IDL cannot restore more than 2.1 GB of data from a .sav file due to the
32-bit limitation.

Platforms that Support 64-Bit IDL

The platforms that support 64-bit are:

• Tru64 UNIX on Compaq Alpha hardware

• Sun Solaris 7 and 8 on SPARC (64-bit Ultra hardware)

• Linux on Compaq Alpha hardware

Note the following on 64-bit version of IDL for Sun Solaris:

• The 32-bit version of IDL for Sun Solaris will continue to be supported but as
a separate 32-bit build. In IDL 5.4, there are now two versions of IDL for Sun
SPARC platforms (a 32-bit version and a 64-bit version). During installation,
you have a choice of which versions to install. You can select the 32-bit, 64-
bit, or both if needed.

• To run 64-bit IDL on Sun Solaris, you will need an UltraSparc platform
(sun4u) running the 64-bit Solaris 7 (or later) operating system kernel. A 32-bit
Solaris kernel is also available for the UltraSparc, and is commonly installed
on systems with CPUs slower than 200Mz unless you take special action when
installing Solaris to cause the 64-bit kernel to run. 64-bit IDL will not run on
an UltraSparc using the 32-bit OS kernel. To see which kernel you are running,
execute the isainfo command at the UNIX prompt:

% /bin/isainfo -b
IDL Language Enhancements What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 33
If a value of 32 is returned, you are running a 32-bit kernel. If a value of 64 is
returned, you are running a 64-bit kernel. If isainfo is not present on your
machine, you are probably running Solaris 2.6, which is 32-bit.

• The 32-bit version of IDL will run correctly on a 64-bit version of Solaris. You
do not have to install the 64-bit version of IDL unless you require the ability to
access more than 2.1 GB of memory.

• If you have both the 32-bit and 64-bit versions of IDL installed on Solaris, the
idl and idlde commands will start the 64-bit version. If you wish to start the
32-bit version, you can use the -32 option to the idl or idlde commands. If
you have only the 32-bit version of IDL installed, the idl and idlde
commands will start the 32-bit version.

• The DXF and Dataminer extensions to IDL are not available with the 64-bit
Sun Solaris version of IDL. If you need access to this functionality, you should
install and use the 32-bit version of IDL (along with the 64-bit version) to
access the DXF and Dataminer extension.

For more information on the Solaris operating system, see Sun Microsystem’s web
page at docs.sun.com as well as the installation instructions included with your Sun
Solaris media.

New Support for Reading Compressed Files with Associated
Variables

You can now read compressed files that have been associated to a variable using the
ASSOC function. In previous releases of IDL, you could not associate variables to a
file that was opened using the OPEN procedure with the COMPRESS keyword.

Note
Associated file variables cannot be used for output with files opened using the
COMPRESS keyword to OPEN.
What’s New in IDL 5.4 IDL Language Enhancements

http://docs.sun.com

34 Chapter 1: Overview of New Features in IDL 5.4
New File Handling Routines

There are six new routines in IDL 5.4 that enhance IDL’s ability to perform file
handling operations. These functions are:

New Date Attributes for Retrieving File Status

The FSTAT function in IDL 5.4 now has the ability to return the following
information about file status:

• Creation date of the file

• Last date the file was accessed

• Last date the file was modified

The values returned are in seconds since 1 January 1970 UTC.

For descriptions of the enhancements to FSTAT, see “New and Updated
Keywords/Arguments to IDL Routines” on page 91.

New Support for Converting System Times

The SYSTIME function has been enhanced to:

• Format an input argument giving the number of seconds past January 1, 1970
as a string that represents the date in the format:

DOW MON DD HH:MM:SS YEAR

New Routine Description

FILE_CHMOD Changes the access permissions for a file.

FILE_DELETE Deletes files and empty directories.

FILE_EXPAND_PATH Returns the full path to a file.

FILE_MKDIR Creates a directory.

FILE_TEST Returns whether or not a file exists and attributes
about that file.

FILE_WHICH Searches for a file in a directory path you specify.

Table 1-2: New File Handling Routines in IDL 5.4
IDL Language Enhancements What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 35
where DOW is the day of the week, MON is the month, DD is the day of the
month, HH is the hour, MM is the minute, SS is the second, and YEAR is the
year.

• Output the date string in Universal Time Coordinated (UTC) rather than being
adjusted for the current time zone.

For descriptions of the new argument and keyword to SYSTIME, see “New and
Updated Keywords/Arguments to IDL Routines” on page 91.

Improvements for Formatted Input Using READ and READF

The READ and READF routines now understand all three possible stream file line
termination conventions on all platforms:

• Macintosh — CR

• UNIX — LF

• Windows/DOS — CR/LF

IDL running on any operating system can transparently read from files using any of
these conventions.

New Function for Testing Equality of Arrays

The ARRAY_EQUAL function is a fast way to compare data for equality in
situations where the index of the elements that differ are not of interest. This
operation is much faster than using TOTAL(A NE B), because it stops the
comparison as soon as the first inequality is found, an intermediate array is not
created, and only one pass is made through the data. For best speed, ensure that the
types of the operands are the same.

New Function for Multiplying Transposed Arrays

The new MATRIX_MULTIPLY function has been added to IDL to provide a more
efficient means of multiplying transposed arrays. The MATRIX_MULTIPLY
function calculates the IDL matrix-multiply operator (#) of two (possibly transposed)
arrays. The transpose operation (if desired) is done simultaneously with the
multiplication, thus conserving memory and increasing the speed of the operation.
What’s New in IDL 5.4 IDL Language Enhancements

36 Chapter 1: Overview of New Features in IDL 5.4
New Program Control Statements

Three new program control statements have been added in IDL 5.4:

For more information on IDL’s program control statements, see Chapter 11,
“Program Control” in Building IDL Applications.

Enhanced RESOLVE_ROUTINE Function

The new COMPILE_FULL_FILE keyword has been added to the
RESOLVE_ROUTINE function. When compiling a file to find the routine specified
using the Name argument, IDL normally stops compiling when the desired routine is
found. Set COMPILE_FULL_FILE to cause the entire file to be compiled regardless
of Name being encountered before the end of the file.

CALL_EXTERNAL Enhancement to Automatically Write and
Compile Intermediate Glue Code on the Fly

The new CALL_EXTERNAL AUTO_GLUE keyword causes CALL_EXTERNAL
to write the intermediate glue code (previously written by IDL users) that converts
the IDL calling convention to the argument list actually needed by the target function.

Statement Description

BREAK The BREAK statement provides a convenient way to
immediately exit from a loop (FOR, WHILE,
REPEAT), CASE, or SWITCH statement without
resorting to GOTO statements.

CONTINUE The CONTINUE statement provides a convenient way
to immediately start the next iteration of the enclosing
FOR, WHILE, or REPEAT loop.

SWITCH The SWITCH statement is used to select one statement
for execution from multiple choices, depending upon
the value of the expression following the word
SWITCH. This statement is similar to the CASE
statement. Whereas CASE executes at most one
statement within the CASE block, SWITCH executes
the first matching statement and any following
statements in the SWITCH block.

Table 1-3: New Program Control Statements
IDL Language Enhancements What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 37
It then uses the new MAKE_DLL procedure to compile and link the glue code. You
simply need to make the CALL_EXTERNAL call and all of the intermediate glue
code is created and used quietly behind the scenes on your behalf. The result is the
ability to call arbitrary functions from a sharable library from IDL without writing a
line of C or worrying about the details of compiling and linking sharable libraries on
Windows, UNIX, and VMS platforms.

Enhanced Ability for Spawning Processes

The SPAWN procedure for UNIX platforms has been enhanced in the following
ways:

• You can now capture the exit status from a child process started by IDL.

• You can now capture stderr from a child process started by IDL.

The SPAWN procedure for Windows platforms has been enhanced in the following
ways:

• You can now capture the exit status from a child process started by IDL.

• You can now capture errors from a child process started by IDL.

• You can hide (minimize) the command interpreter window.

• You can run Win32 executables without using the command interpreter
window.

• You can capture the output from SPAWN and display it in the IDL
Development Environment Log window instead of having it go to the
command interpreter window.

• You can execute processes and specify not to wait.

• You can spawn a subprocess and have the IDL process continue executing in
parallel with the spawned subprocess.

For descriptions of the new arguments and keywords to SPAWN, see “New and
Updated Keywords/Arguments to IDL Routines” on page 91.

New Support for TCP/IP Client Side Sockets

The new SOCKET procedure, supported on UNIX and Windows platforms, opens a
client side TCP/IP Internet socket as an IDL file unit. Such files can be used in the
standard manner with any of IDL’s input/output routines.
What’s New in IDL 5.4 IDL Language Enhancements

38 Chapter 1: Overview of New Features in IDL 5.4
New Altivec Support for Macintosh

With the introduction of the G4 series of PowerPC processors, a new vector unit has
been introduced to the architecture. Called “Altivec” by Motorola and “The Velocity
Engine” by Apple, this unit provides a new set of vector operations which greatly
enhance the performance of processing certain kinds of operations.

IDL 5.4 has added Altivec support for array operations of the following types:

Other operations that have been accelerated:

These accelerated operators apply to array <operator> array calculations as well as
array <operator> scalar and scalar <operator> array calculations.

Relaxed Rules for Combining Structures

IDL 5.4 now allows concatenation and assignment of structures with different but
compatible definitions. For example, consider the following structures:

s1 = { moose1, a:fltarr(10, 10), b:23 }
s2 = { moose2, x:fltarr(100), z:intarr(1) }

These statements are different, but they are compatible in terms of actual memory
layout. In IDL 5.4, the following statements are now allowed which would have
produced errors in previous releases:

s3 = [s1, s2]
s3[1] = s2

This eliminates a problem commonly encountered with anonymous structures. For
example:

s1 = REPLICATE({ a:fltarr(10,10), b:23 }, 10)
s1[4] = { a:FINDGEN(10, 10), b:79 }

• Byte • Long

• Integer • Unsigned Long

• Complex • Floating-Point

• Unsigned Integer

• Addition • Multiplication

• Subtraction • Division
IDL Language Enhancements What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 39
In previous versions, the two anonymous structures in these statements are
considered to yield different types and therefore would not have been allowed. In
IDL 5.4, these statements are recognized to be of different types, but still compatible
and the statements are allowed.

New C printf-Style Quoted String Format Code

IDL’s explicitly formatted specifications, which are based on those found in the
FORTRAN language, are extremely powerful and capable of specifying almost any
desired output. However, they require fairly verbose specifications, even in simple
cases. In contrast, the C language (and the many languages influenced by C) have a
different style of format specification used by functions such as printf() and
sprintf(). Most programmers are very familiar with such formats. In this style,
text and format codes (prefixed by a % character) are intermixed in a single string.
User-supplied arguments are substituted into the format in place of the format
specifiers. Although less powerful, this style of format is easier to read and write in
common simple cases.

IDL now supports the use of printf-style formats within format specifications,
using a special variant of the Quoted String Format Code in which the opening quote
starts with a % character (e.g. %" or %' rather than " or '). The presence of this %
before the opening quote (with no white space between them) tells IDL that this is a
printf-style quoted string and not a standard quoted string.

As a simple example, consider the following IDL statement that uses normal quoted
string format codes:

PRINT, FORMAT='("I have ", I0, " monkeys, ", A, ".")', $
23, 'Scott'

Executing this statement yields the output:

I have 23 monkeys, Scott.

Using a printf-style quoted string format code instead, this statement could be
written:

PRINT, FORMAT='(%"I have %d monkeys, %s.")', 23, 'Scott'

These above statements are completely equivalent in their action.

For more information on printf-style formats, see “C printf-Style Quoted String
Format Code” in Chapter 8 of Building IDL Applications.
What’s New in IDL 5.4 IDL Language Enhancements

40 Chapter 1: Overview of New Features in IDL 5.4
Enhanced WHERE Function

The COMPLEMENT and NCOMPLEMENT keywords have been added to the
WHERE function to return the subscripts and number of zero elements in the input
array. For descriptions of the new keywords to WHERE, see “WHERE” on page 120.
IDL Language Enhancements What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 41
LZW/GIF No Longer Supported in IDL

Research Systems is no longer able to support reading and writing GIF (Graphics
Interchange Format) images or LZW (Lempel-Zif-Welch) compression for TIFF
images. The LZW technology has been patented by the Unisys Corporation. Note
that any users of GIF/LZW technology are required to enter into a license agreement
with Unisys Corporation.

The following are the related changes to IDL:

• READ_GIF, WRITE_GIF, and QUERY_GIF — These routines no longer
are able to read, write, and query GIF files. If you use these routines in any
IDL application, when executing, IDL will produce an error message and
execution will halt.

As an alternative to GIF, you can use the Portable Network Graphics (PNG)
format. This allows you to easily search and replace many of your calls to
READ_GIF, WRITE_GIF, and QUERY_GIF with READ_PNG,
WRITE_PNG, and QUERY_PNG. If you are currently using any GIF files in
your IDL applications, you will need to convert them to PNG.

The PNG format is a new standard intended to replace GIF as a dominant
network format. PNG handles 8-bit and 24-bit images and uses a lossless
compression scheme to compress images. For more information, see
READ_PNG, WRITE_PNG, and QUERY_PNG in the IDL Reference Guide.

READ_PNG, already an IDL function, has been enhanced in this release so
that you can now call it as a procedure allowing it to be easily used as a
replacement for READ_GIF. Note that the READ_PNG function is still a
supported IDL routine.

• READ_IMAGE, WRITE_IMAGE, and QUERY_IMAGE — These
routines no longer support the ability to access GIF files.

• DIALOG_READ_IMAGE and DIALOG_WRITE_IMAGE — These
routines no longer support the ability to access GIF files.

• ANNOTATE — This routine no longer supports the ability to save an
annotated image as a GIF file.

• READ_TIFF and WRITE_TIFF — These routines no longer support the
ability to read and write TIFF files with LZW compression. If you have created
TIFF files in previous releases of IDL that use LZW compression, you will no
longer be able to access those files using READ_TIFF. If you set the
What’s New in IDL 5.4 LZW/GIF No Longer Supported in IDL

42 Chapter 1: Overview of New Features in IDL 5.4
COMPRESSION keyword to WRITE_TIFF to a value of 1 (previously this
created a TIFF file using LZW compression), the resulting TIFF file will be
created using the PackBits compression.

• LIVE_EXPORT — This routine no longer supports the ability to export a
TIFF file with LZW compression. If you set the COMPRESSION keyword to
a value of 1 (previously this created a TIFF file using LZW compression), the
resulting TIFF file will be created using the PackBits compression.

• IDL Insight — The Insight application has been removed from IDL. Insight
uses LZW compression for saving compressed project files and therefore can
no longer be included with IDL.

Research Systems apologizes for any inconvenience this may cause. For more
information on this topic and information on existing GIF conversion utilities, visit
www.ResearchSystems.com/IDL.
LZW/GIF No Longer Supported in IDL What’s New in IDL 5.4

http://www.ResearchSystems.com/IDL

Chapter 1: Overview of New Features in IDL 5.4 43
File I/O Enhancements

The following file I/O enhancements have been made in the IDL 5.4 release:

• New Support for ESRI Shapefiles

• Improved Performance with the READ_ASCII Function

• Library Updates

• Enhanced READ_PNG and WRITE_PNG Functions

• Enhancements to the Quality of MPEG Movies

• Windows Input/Output Behavior Improved

New Support for ESRI Shapefiles

IDL now provides support for Shapefiles through the use of a Shapefile Object,
IDLffShape. This object encapsulates all functionality that is required to access a
Shapefile.

For more information on the new IDLffShape class, see Chapter 4, “New Objects”.

Improved Performance with the READ_ASCII Function

The performance of READ_ASCII has been significantly improved when reading
large ASCII files.

Library Updates

The following libraries have been updated in the IDL 5.4 release:

Library New Version Previous Version

DXF 2.003 1.010

PNG 1.0.5 .89c

ZLIB 1.1.3 1.04

Table 1-4: Updated Libraries in IDL 5.4
What’s New in IDL 5.4 File I/O Enhancements

44 Chapter 1: Overview of New Features in IDL 5.4
Enhanced READ_PNG and WRITE_PNG Functions

READ_PNG and WRITE_PNG have been changed to read and write PNG files in
top-to-bottom order. PNG files should now have the correct orientation when
transferred from other applications to IDL. An ORDER keyword has been added to
provide compatibility with PNG files written using earlier versions of IDL.

Enhancements to the Quality of MPEG Movies

In IDL 5.4, new keywords have been added to help control the level of compression
and motion prediction used when creating MPEG movies. Now you can weigh the
final quality/file size versus the amount of time needed to create an MPEG movie.

Note
MPEG support in IDL requires a special license. For more information, contact
your Research Systems sales representative or technical support.

For more information, see MPEG_OPEN and XINTERANIMATE in “New and
Updated Keywords/Arguments to IDL Routines” on page 91 and IDLgrMPEG in
“New and Updated Keywords/Arguments to IDL Object Methods” on page 67.

Windows Input/Output Behavior Improved

In order to make read/write operations under Windows work correctly the way they
do under Unix, read/write operations under Windows are handled differently in IDL
5.4 than in earlier versions of IDL. In some cases, this may require changes to
existing IDL code. Before we look at an example in which code would need to be
updated, the following is a brief background of this issue.

Under Microsoft Windows, a file is read or written as an uninterrupted stream of
bytes-there is no record structure at the operating system level. Lines in a Windows
text file are terminated by the character sequence CR LF (carriage return, line feed).

The Microsoft C runtime library considers a file to be in either binary or text mode,
and its behavior differs depending on the current mode of the file. The programmer
confusion caused by this distinction is a cause of many C/C++ program bugs. IDL is
not affected by this quirk of the C runtime library, and no special action is required to
work around it. Read/write operations are handled the same in Windows as in Unix:
when IDL performs a formatted I/O operation, it reads/writes the CR/LF line
termination. When it performs a binary operation, it simply reads/writes raw data.

Versions of IDL prior to IDL 5.4 (5.3 and earlier), however, were affected by the
text/binary distinction made by the C library. The BINARY and NOAUTOMODE
File I/O Enhancements What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 45
keywords to the OPEN procedures were provided to allow the user to change IDL’s
default behavior during read/write operations. In IDL 5.4 and later versions, these
keywords are no longer necessary. They continue to be accepted in order to allow
older code to compile and run without modification, but they are completely ignored
and can be safely removed from code that does not need to run on those older
versions of IDL.

Some rare Windows-specific code that contains special workarounds using BINARY
or NOAUTOMODE may require modification or removal in order for the program to
work correctly under IDL 5.4. Once modified, such code will be simpler, and
portable to other operating systems. For example, assume you used the following
code in the Windows version of IDL 5.3 to write a Unix-format text file:

OPENW, 1, 'unix.txt', /BINARY, /NOAUTOMODE
PRINTF, 1, 'A line of text'

The above code would create a text file that looks like this:

A line of textLF

where LF is a linefeed character. If you were to run the above code in IDL 5.4, the
resulting text file would look like this:

A line of textCRLF

where CR is the carriage return character and LF is the linefeed character. Using IDL
5.4, this code should be updated as follows:

OPENW, 1, 'unix.txt'
WRITEU, 1, 'A line of text' + STRING(10B)

This code creates the following text file in both IDL 5.3 and IDL 5.4:

A line of textLF
What’s New in IDL 5.4 File I/O Enhancements

46 Chapter 1: Overview of New Features in IDL 5.4
Development Environment Enhancements

The following enhancements have been made to the IDL Development Environment
in the IDL 5.4 release:

• Improved IDL Projects

• Importing IDL Preferences & Macros from Previous Releases

• New Preferences for Windows Always on Top for the IDLDE

• New Error Window for Macintosh

• New Editor Window on Macintosh

• Running With Breakpoints in the Macintosh Editor Window

• Improved General Preferences Dialog Box

Improved IDL Projects

IDL Projects, introduced in IDL 5.3, allow you to easily develop applications in IDL.
You can manage, compile, run, and create distributions of all the files you will need
to develop your IDL application. All of your application files can be organized so that
they are easier to access and easier to export to other developers, colleagues, or users.
IDL Projects are a great benefit to development teams working on a large project as
well as individual developers managing multiple projects.

Many improvements have been made to IDL Projects in IDL 5.4 to allow for better
project management as well as for cross-platform compatibility. The following
improvements have been made to IDL Projects in this release:

• You can now create and name your own groups for storing files as well as
create your own filters for specifying which types of files are to be stored in a
group. To change your groups, select Project → Groups... The Project
Groups dialog is displayed:
Development Environment Enhancements What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 47
• You can now select multiple files for editing, deleting, compiling, and setting
of attributes by pressing the Ctrl and Shift keys when selecting files.

• Projects will now store all breakpoint information for .pro files. When you
have created breakpoints for a file and then save the project, the next time you
open that file through your project, the breakpoint information will be restored.

• Only files that can be compiled are shown in the Build dialog.

• A new tool bar for the IDL Project window has been added on Windows and
UNIX platforms that was previously available on the Macintosh platform. This
toolbar allows quick access for frequently used tasks.

Figure 1-5: New Project Groups Dialog

Displays the Project Options dialog for setting or
modifying the current project’s options.

Displays the Add/Remove Files dialog for adding or
removing files from the current project.

Compiles all the files in the current project.

Builds the current project.

Runs the current project.

Displays the File Properties dialog for setting or
modifying the current file’s properties.
What’s New in IDL 5.4 Development Environment Enhancements

48 Chapter 1: Overview of New Features in IDL 5.4
Importing IDL Preferences & Macros from Previous Releases

IDL for Windows now has new support for importing preferences and user-defined
macros from a previous release of IDL.

The first time you start IDL for Windows after installing, you will be prompted for
whether or not you want to import preferences or user-defined macros from a
previous release of IDL.

Note
It is not necessary to explicitly import macros from previous releases of IDL on
UNIX, VMS, or Macintosh platforms. IDL preferences and macros are
automatically imported on these platforms.

If you do not want to import preferences and user-defined macros, select No and IDL
will start. If you want to import from a previous release, select Yes. The new Import
IDL Preferences dialog displays.

This dialog displays the paths to the previous IDL installations on your machine in
the drop-down list box. Select the path to the previous release of IDL from which to

Figure 1-6: Importing IDL Preferences from Previous Releases

Figure 1-7: Import IDL Preferences Dialog
Development Environment Enhancements What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 49
import preferences and user-defined macros. If you want to import any user-defined
macros from this installation as well, select the Import Macros check box. Click
OK. The preferences and user-defined macros are imported and then IDL will start.

Note
If you chose not to import user-defined macros or if you want to import macros
from several previous installations, you can select Macros→Import, and select the
previous release from which to import the macros.

New Preferences for Windows Always on Top for the IDLDE

A new preference has been added on the Windows platform so that you can specify
whether graphic windows you create will remain on top of the IDL Development
Environment window or if they can be hidden behind the IDL Development
Environment window when it is in focus. IDL graphics windows that are affected by
this preference are those created through IDL Direct Graphics (i.e. WINDOW,
PLOT, SURFACE, CONTOUR procedures) or in IDL Object Graphics through the
creation of an IDLgrWindow object.

New Error Window for Macintosh

A new window has been added on the Macintosh platform for displaying compilation
errors. During compilation, the Error Window will display all the errors encountered.

Figure 1-8: New “Always On Top” Preference
What’s New in IDL 5.4 Development Environment Enhancements

50 Chapter 1: Overview of New Features in IDL 5.4
Clicking on the error displays that line of the program that contains the error in the
IDL Editor window.

New Editor Window on Macintosh

The Editor window has been improved and now has a button bar with a path box and
an icon which indicates whether the file is writable or read-only. The buttons on the
button bar from left to right are Save, Print, Compile, and Run and are provided for
ease of access during editing. The path box is simply an informational box and is not
editable. The icon at the right side of the button bar shows a pencil to indicate the file
is writable, or a lock to indicate the file is read-only.

Multiple Panes in the Editor Window

You can create multiple editing panes within the Editor window enabling you to edit
multiple sections of the program without having to scroll back and forth. To open a
second pane, click on the button at the top of the vertical scroll bar on the right and
drag it until a second horizontal base is seen. When you release the mouse button a
second pane with the same program appears. More than two panes are possible in an
Editor window, as long as each pane exceeds the minimum size necessary.

The Breakpoint Column

On the left side of each pane in the Editor window is a border used to display break
points, flag compiler errors, and the current executing line of code. Rows with tick

Figure 1-9: New Error Window for Macintosh
Development Environment Enhancements What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 51
marks indicate program lines with executable IDL statements. You can set and unset
breakpoints on these lines by clicking on the tick mark or breakpoint. Click on the
tick mark to set the breakpoint, and click on the disabled breakpoint to display the
tick mark again.

The Line Box

The line number button box at the bottom left of an IDL Editor window displays the
line number of the insertion point in the active pane. To relocate the cursor on another
line in the same pane, click in the box and specify the line number in the Go To Line
field of the new dialog box. Clicking the line number box is a shortcut for the Go To
Line option from the Search menu for the active pane in the Editor window.

Function Drop Down List

The button with parentheses and a down arrow to the right of the Line box brings up
a drop down list containing the functions and procedures defined in the current .pro
file. Choosing a function or procedure from the list moves the cursor to that function
or procedure definition in the active pane of the Editor window.

Figure 1-10: The IDL Editor Window
What’s New in IDL 5.4 Development Environment Enhancements

52 Chapter 1: Overview of New Features in IDL 5.4
Running With Breakpoints in the Macintosh Editor Window

When you set breakpoints in a .pro file and compile and run the program, the Editor
window buttons change to allow you to step through the program using the
breakpoints. The four buttons at the top of the window become step buttons (see the
following figure) which call the various executive commands for stepping through a
program: at the left is Step Out which calls .OUT, next is Step Over which calls
.STEPOVER, then Step In which calls .STEP, and the fourth button is Continue
which calls .CONTINUE.

Figure 1-11: Running with Breakpoints in the Editor Window
Development Environment Enhancements What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 53
Improved General Preferences Dialog Box

These preferences control the general appearance and behavior of IDL. The
following two selections have been added to the General Preferences dialog box.

Auto Complete Command Line

If checked this option enables IDL to compare commands as they are being typed at
the command line prompt against the commands in the recall buffer. IDL auto
completes the command when a unique match to a previous command is found. This
is particularly useful for commands used quite often, such as Print.

Save Breakpoints on Quit

If selected, all IDL program breakpoints are saved from session to session until this
check box is deselected. When this option is deselected, all saved breakpoints are
cleared upon exiting IDL.

Figure 1-12: The General Preferences Dialog
What’s New in IDL 5.4 Development Environment Enhancements

54 Chapter 1: Overview of New Features in IDL 5.4
Installation and Licensing Enhancements

The following enhancements have been made to IDL Installation and Licensing in
the IDL 5.4 release:

• New Licensing Wizard

• Improved Floating License Management Utilities

• New QUEUE Startup Command Line Option

New Licensing Wizard

The new licensing wizard for Windows and UNIX platforms has been designed with
user convenience in mind. The wizard allows you to easily create and send a license
request. The new request process automatically recognizes all installed Research
Systems software products so that you need only a single license file to run any
Research Systems product. When your license file arrives, the wizard automatically
recognizes where you have installed IDL and guides you to save the license file in the
appropriate location.

For more information, see your Installation Guide.

Improved Floating License Management Utilities

This version of IDL offers the FLEXlm License Manager Control Panel, a simple
graphical interface that easily allows you to configure your license manager service
for floating licenses. Under the Setup tab, you can browse to select the appropriate
files and with a click of the mouse, arrange to have the license manager automatically

Figure 1-13: New Licensing Wizard
Installation and Licensing Enhancements What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 55
started any time your server is booted. Other features of this utility allow you to start
or stop the license manager and to complete simple diagnostics with a click of the
mouse.

New QUEUE Startup Command Line Option

Improved IDL functionality now allows users of counted floating licenses to choose
to start IDL with the new QUEUE argument, assuring that a license will be issued for
IDL before beginning an IDL task such as a batch processing job. Using this method
of starting IDL when a counted license is unavailable, IDL will not issue a prompt for
licensing, but will continue to wait until one becomes available. Using the new
QUEUE startup switch is especially useful during batch processing since previously,
the IDL command log window message, asking if you wanted to wait for an available
license, was unavailable for viewing. To start IDL with the new QUEUE option, use
one of the following methods:

Figure 1-14: New FLEXlm License Manager Control Panel

Platform Method

UNIX Enter the following at the UNIX prompt:
idl -queue

Table 1-5: QUEUE Startup Command Line Option
What’s New in IDL 5.4 Installation and Licensing Enhancements

56 Chapter 1: Overview of New Features in IDL 5.4
VMS Enter the following at the VMS prompt:
IDL /QUEUE

Windows Change the shortcut properties of the desktop IDL 5.4 icon so
the target line reads:
C:\RSI-Directory\bin\bin.x86\idlde.exe -queue
where RSI-Directory is the directory where you have
installed IDL.

Platform Method

Table 1-5: QUEUE Startup Command Line Option
Installation and Licensing Enhancements What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 57
Application Development Enhancements

The following enhancements have been made in the IDL 5.4 release.

Modifications to the DIALOG_PICKFILE Function

The FILTER keyword to DIALOG_PICKFILE has been enhanced to allow you to
specify an IDL variable containing a string value or an array of string values for
filtering the files in the file list. This keyword is used to reduce the number of files to
choose from. If the value contains a vector of strings, multiple filters are used to filter
the files.

For example, you may want to include a filter so that only files of type .jpg, .tif,
or .png show in the file selection window. To accomplish this, you would use:

file = DIALOG_PICKFILE(/READ, $
FILTER = ['*.jpg', '*.tif', '*.png'])

This would result in the following dialog:

Note
On UNIX, the FILTER keyword does not support specifying more than one filter. If
you specify more than one filter, all files in the current directory will be displayed.

Figure 1-15: Example of DIALOG_PICKFILE Filter
What’s New in IDL 5.4 Application Development Enhancements

58 Chapter 1: Overview of New Features in IDL 5.4
Additional Support for Calling Online Help from Your
Application

Two keywords have been added to the ONLINE_HELP procedure to allow you to:

• Access a Windows HTML Help file with the new HTML_HELP keyword.

• Display the Contents window of the Help system with the new TOPICS
keyword.

For more information on specific changes to ONLINE_HELP, see “New and Updated
Keywords/Arguments to IDL Routines” on page 91.
Application Development Enhancements What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 59
IDL Wavelet Toolkit Enhancements

The IDL Wavelet Toolkit version 1.1 offers enhanced functionality and new features.

• Enhanced data input for ASCII data files, especially for “time-series” data

• Implementation of the continuous wavelet transform

• New Morlet and Paul wavelet functions for use with the continuous wavelet
transform

• Improved visualization for the 3D wavelet power spectrum

Figure 1-16: The 3D wavelet power spectrum with the Paul continuous wavelet.
What’s New in IDL 5.4 IDL Wavelet Toolkit Enhancements

60 Chapter 1: Overview of New Features in IDL 5.4
New Functions

The following table describes the new functions for the IDL Wavelet Toolkit. These
functions are accessible either from the Wavelet Toolkit applet, or directly from the
IDL command line.

New and Updated Keywords/Arguments

The following is a list of new and updated keywords and arguments to existing
routines in the IDL Wavelet Toolkit.

WV_APPLET

Command Description

WV_CWT Returns the one-dimensional continuous wavelet
transform of the input array. The transform is
done using a user-inputted wavelet function.

WV_DENOISE Uses the wavelet transform to filter (or
de-noise) a multi-dimensional array.

WV_FN_GAUSSIAN Constructs wavelet coefficients for the Gaussian
wavelet function.

WV_FN_MORLET Constructs wavelet coefficients for the Morlet
wavelet function.

WV_FN_PAUL Constructs wavelet coefficients for the Paul
wavelet function.

Table 1-6: New Wavelet Toolkit functions

Keyword/Argument Description

Input This argument can now either be a string representing
a save file to open, or an array of data.
IDL Wavelet Toolkit Enhancements What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 61
WV_CW_WAVELET

WV_PLOT3D_WPS

Keyword/Argument Description

DISCRETE Set this keyword to include only discrete wavelets in
the list of wavelet functions. Set this keyword to zero
to include only continuous wavelets. The default is to
include all available wavelets.

NO_COLOR If this keyword is set, the wavelet functions will be
drawn in black and white.

NO_DRAW_WINDOW If this keyword is set, the draw window will not be
included within the widget.

VALUE Set this keyword to an anonymous structure of the
form {FAMILY:’’, ORDER:0d} representing the
initial value for the widget.

Keyword/Argument Description

Input This argument can now either be a string representing
the file to open, or an array of data.

SURFACE_STYLE Set this keyword to an integer specifying the initial
style to use for the three-dimensional surface. Valid
values are:

• 0 = Off

• 1 = Points

• 2 = Mesh

• 3 = Shaded

• 4 = XZ lines

• 5 = YZ lines

• 6 = Lego

• 7 = Lego fill
What’s New in IDL 5.4 IDL Wavelet Toolkit Enhancements

62 Chapter 1: Overview of New Features in IDL 5.4
New and Enhanced IDL Utilities

IDL 5.4 now contains utilities that can be used in several ways:

• As stand-alone applications

• As tools for helping you create applications

• Embedded within IDL applications that you develop

All of these utilities are located in the lib/utilities directory and have been
added to your path at install time. Some of these utilities existed in previous versions
of IDL but have been improved.

These utilities may be updated in subsequent IDL releases to take advantage of new
features and technologies.

New and Existing IDL Utilities

The following table lists the IDL utilities. Note that utilities that existed in previous
versions have been listed here since they have moved within the directory structure.

Utility Description

XBM_EDIT The XBM_EDIT utility allows you to create and edit
icons for use with IDL widgets as bitmap labels for
widget buttons. This utility was in the lib directory in
previous releases. It is now located in the
lib/utilities directory.

XDISPLAYFILE The XDISPLAYFILE utility displays an ASCII text
file using a widget interface. This utility was in the lib
directory in previous releases. It is now located in the
lib/utilities directory.

XDXF The XDXF procedure is a utility for displaying and
interactively manipulating DXF objects.

XFONT The XFONT utility creates a modal widget for
selecting and viewing an X Windows font. This utility
was in the lib directory in previous releases. It is now
located in the lib/utilities directory.

Table 1-7: New and Existing IDL Utilities
New and Enhanced IDL Utilities What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 63
XINTERANIMATE The XINTERANIMATE procedure displays an
animated sequence of images using off-screen pixmaps
or memory buffers. This utility was in the lib
directory in previous releases. It is now located in the
lib/utilities directory.

XLOADCT The XLOADCT utility displays the current color table
and allows you to select a different color table to be
loaded from a predefined color table list. This utility
was in the lib directory in previous releases. It is now
located in the lib/utilities directory.

XMTOOL The XMTOOL utility displays a list of widgets
currently being managed by the XMANAGER. This
utility was in the lib directory in previous releases. It
is now located in the lib/utilities directory.

XOBJVIEW The XOBJVIEW utility can be used to quickly and
easily view and manipulate IDL Object Graphics on
screen. It displays given objects in an IDL widget with
toolbar buttons and menus providing functionality for
manipulating, printing, and exporting the resulting
graphic. This utility was in the lib directory in
previous releases. It is now located in the
lib/utilities directory.

XPALETTE The XPALETTE utility allows you to create and
modify color tables using the RGB, CMY, HSV, or
HLS color systems. This utility was in the lib
directory in previous releases. It is now located in the
lib/utilities directory.

XPCOLOR The XPCOLOR procedure allows you to adjust the
value of the current foreground plotting color,
!P.COLOR. The new plotting foreground color is
saved in the COLORS common block and loaded to
the display.

XPLOT3D The XPLOT3D utility is used to create and
interactively manipulate 3D plots.

Utility Description

Table 1-7: New and Existing IDL Utilities
What’s New in IDL 5.4 New and Enhanced IDL Utilities

64 Chapter 1: Overview of New Features in IDL 5.4
New Keywords/Arguments to Existing IDL Utilities

The following is a list of the new keywords to existing IDL utilities:

XOBJVIEW

XROI The new XROI procedure is a utility for interactively
defining and obtaining information about regions of
interest. Freehand and polygon ROIs can be drawn,
and information such as minimum, maximum, and
mean pixel values and histogram plots can be
displayed.

XSURFACE The XSURFACE utility can be used to quickly and
easily view surface plots. Different controls are
provided to change the viewing angle and other plot
parameters. This utility was in the lib directory in
previous releases. It is now located in the
lib/utilities directory.

XVAREDIT The XVAREDIT utility allows you to edit any IDL
variable. This utility was in the lib directory in
previous releases. It is now located in the
lib/utilities directory.

XVOLUME The new XVOLUME procedure is a utility for viewing
and interactively manipulating volumes and
isosurfaces.

Keyword/Argument Description

BACKGROUND Set this keyword to a three-element [r, g, b] color
vector specifying the background color of the
XOBJVIEW window.

DOUBLE_VIEW Set this keyword to force XOBJVIEW to set the
DOUBLE property on the IDLgrView that it uses to
display graphical data.

Utility Description

Table 1-7: New and Existing IDL Utilities
New and Enhanced IDL Utilities What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 65
REFRESH Set this keyword to the widget ID of the XOBJVIEW
instance to be refreshed. To retrieve the widget ID of
an instance of XOBJVIEW, first call XOBJVIEW
with the TLB keyword. To refresh that instance of
XOBJVIEW, call XOBVIEW again and set
REFRESH to the value retrieved by the TLB keyword
in the earlier call to XOBJVIEW.

TLB Set this keyword to a named variable that upon return
will contain the widget ID of the top level base.

Keyword/Argument Description
What’s New in IDL 5.4 New and Enhanced IDL Utilities

66 Chapter 1: Overview of New Features in IDL 5.4
New and Enhanced IDL Objects

This section describes the following:

• New Object Classes

• New Object Methods

• New and Updated Keywords/Arguments to IDL Object Methods

New Object Classes

The following table describes the new object classes in IDL 5.4:

New Object Methods

New and existing IDL Object Graphics classes have been updated to include the
following new methods:

Object Class Description

IDLffShape An object that contains geometry, connectivity and
attributes for graphics primitives.

New Methods Description

IDLffShape::AddAttribute This method adds an attribute to a
Shapefile.

IDLffShape::Cleanup This method performs all cleanup on the
Shapefile object.

IDLffShape::Close This method closes a Shapefile.

IDLffShape::DestroyEntity This method destroys the specified entities
of a Shapefile.

IDLffShape::GetAttribute This method retrieves the attributes for the
entities you specify.

IDLffShape::GetEntity This method returns an array of Shapefile
entity structures.

IDLffShape::GetProperty This method returns the values of
properties associated with the Shapefile
object.
New and Enhanced IDL Objects What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 67
New and Updated Keywords/Arguments to IDL Object
Methods

The following table describes the new and updated keywords/arguments to IDL
objects.

IDLanROI::AppendData

IDLanROI::ComputeGeometry

IDLffShape::Init This method initializes or constructs a
Shapefile object.

IDLffShape::Open This method opens a specified shapefile.

IDLffShape::PutEntity This method inserts an entity into the
Shapefile object.

IDLffShape::SetAttributes This method modifies the attributes for a
specified entity in a Shapefile object.

Keyword/Argument Description

X, Y, Z The values specified with these arguments are now
maintained as double-precision if in the Init or
SetProperty method the input data was of type
DOUBLE or if the DOUBLE keyword was set.
Otherwise, the values are maintained as single-
precision.

XRANGE, YRANGE,
ZRANGE

The values returned in the variable specified with
these keywords are now double-precision.

Keyword/Argument Description

AREA The value returned in the variable you specify with
this keyword are now double-precision.

CENTROID The value returned in the variable you specify with
this keyword are now double-precision.

PERIMETER The value returned in the variable you specify with
this keyword are now double-precision.

New Methods Description
What’s New in IDL 5.4 New and Enhanced IDL Objects

68 Chapter 1: Overview of New Features in IDL 5.4
IDLanROI::ComputeMask

IDLanROI::GetProperty

IDLanROI::Init

SPATIAL_SCALE The value for this keyword may now be double-
precision and will no longer be converted to single-
precision.

Keyword/Argument Description

LOCATION The value for this keyword may now be double-
precision and will no longer be converted to single-
precision.

Keyword/Argument Description

N_VERTS Set this keyword to a named variable that will contain
the number of vertices currently being used by the
region.

ROI_XRANGE,
ROI_YRANGE,
ROI_ZRANGE

The values returned in the variable specified with
these keywords are now double-precision.

Keyword/Argument Description

X, Y, Z The values specified with these arguments are now
maintained as double-precision if the input data is of
type DOUBLE or if the DOUBLE keyword is set.
Otherwise, the values are stored as single-precision.

DATA The value for this property is now stored as double-
precision if the input data is of type DOUBLE or if the
DOUBLE keyword is set. Otherwise, it is stored as
single-precision.

DOUBLE Set this keyword to indicate that data provided by any
of the X, Y, or Z arguments or the DATA keyword
will be stored in this object as double-precision
floating-point.

Keyword/Argument Description
New and Enhanced IDL Objects What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 69
IDLanROI::RemoveData

IDLanROI::ReplaceData

IDLanROI::Rotate

IDLanROI::Scale

Keyword/Argument Description

XRANGE, YRANGE,
ZRANGE

The values returned in the variable specified with
these keywords are now double-precision.

Keyword/Argument Description

X, Y, Z The values specified with these arguments are now
maintained as double-precision if in the Init or
SetProperty method, the inputted data was of type
DOUBLE or if the DOUBLE keyword was set.
Otherwise, the values are maintained as single-
precision.

XRANGE, YRANGE,
ZRANGE

The values returned in the variable specified with
these keywords are now double-precision.

Keyword/Argument Description

CENTER The values for this keyword may now be double-
precision and will no longer be converted to single-
precision.

Keyword/Argument Description

Sx, Sy, Sz The values for these arguments may now be double-
precision and will no longer be converted to single-
precision.
What’s New in IDL 5.4 New and Enhanced IDL Objects

70 Chapter 1: Overview of New Features in IDL 5.4
IDLanROI::Translate

IDLanROIGroup::ComputeMesh

IDLanROIGroup::GetProperty

IDLanROIGroup::Rotate

IDLanROIGroup::Scale

Keyword/Argument Description

Tx, Ty, Tz The values for this argument may now be double-
precision and will no longer be converted to single-
precision.

Keyword/Argument Description

VERTICES The values returned in this argument are double-
precision if the DOUBLE keyword was set in the
IDLanROI::Init method for any ROI in the group.
Otherwise, the values returned are single-precision.

SURFACE_AREA The value returned in the variable you specify with
this keyword are now double-precision.

Keyword/Argument Description

ROIGROUP_XRANGE,
ROIGROUP_YRANGE,
ROIGROUP_ZRANGE

The values returned in the variable specified with
these keywords are now double-precision.

Keyword/Argument Description

CENTER The values for this keyword may now be double-
precision and will no longer be converted to single-
precision.

Keyword/Argument Description

Sx, Sy, Sz The values for these arguments may now be double-
precision and will no longer be converted to single-
precision.
New and Enhanced IDL Objects What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 71
IDLanROIGroup::Translate

IDLgrAxis::GetCTM

IDLgrAxis::GetProperty

IDLgrAxis::Init

Keyword/Argument Description

Tx, Ty, Tz The values for this argument may now be double-
precision and will no longer be converted to single-
precision.

Keyword/Argument Description

n/a This method now returns double-precision values.

Keyword/Argument Description

CRANGE The values returned in the variable specified with this
keyword are double-precision.

XRANGE, YRANGE,
ZRANGE

The values returned in the variable specified with this
keyword are double-precision.

Keyword/Argument Description

AM_PM Set this keyword to an array of 2 strings to be used for
the names of the AM and PM strings when processing
explicitly formatted dates (CAPA, CApA, and CapA
format codes) with the TICKFORMAT keyword.

DAYS_OF_WEEK Set this keyword to an array of 7 strings to be used for
the names of the days of the week when processing
explicitly formatted dates (CDWA, CDwA, and
CdwA format codes) with the TICKFORMAT
keyword.

LOCATION The value for this property is now stored as double-
precision.
What’s New in IDL 5.4 New and Enhanced IDL Objects

72 Chapter 1: Overview of New Features in IDL 5.4
MONTHS Set this keyword to an array of 12 strings to be used
for the names of the months of the year when
processing explicitly formatted dates (CMOA,
CMoA, and CmoA format codes) with the
TICKFORMAT keyword.

RANGE The value for this property is now stored as double-
precision.

TICKFORMAT 1. This keyword may now be set to either a single
string or an array of strings. Each string
corresponds to a level of the axis.

2. If any of the strings is the name of a callback
function, the third argument to that function (that
is the argument indicating the value of the
tickmark) will be double-precision (rather than
single-precision).

3. If any of the strings is the name of a callback
function and if the TICKUNITS keyword is set to
one or more non-empty strings, the callback
function will be called with four parameters: Axis,
Index, Value and Level, where:

• Axis, Index, and Value are the same as before.

• Level is the Index of the axis level for the current
tick value to be labelled (Level indices start at 0).

TICKINTERVAL Set this keyword to a scalar indicating the interval
between major tick marks for the first axis level. The
default value is computed according to the axis
RANGE and the number of major tick marks
(MAJOR). This keyword takes precedence over
MAJOR.

Keyword/Argument Description
New and Enhanced IDL Objects What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 73
TICKLAYOUT Set this keyword to a scalar that indicates the style to
draw each level of the axis.Valid values are:

• 0 — The axis line, major tick marks, and tick
labels are drawn.

• 1 — Only the labels for the major tick marks are
drawn.

• 2 — Each major tick interval is outlined by a box.

TICKUNITS Set this keyword to a string (or vector of strings) to
indicate the units to be used for axis tick labeling.
Valid values are:

• “Numeric” (the default)

• “Year”

• “Month”

• “Day”

• “Hour”

• “Minute”

• “Second”

• “Time” — Use this value to indicate that the units
are generic time units. IDL will compute
appropriate default intervals and tick formats
based on the range of values covered by the axis.

You can specify more than one type of unit. The axis
levels will be drawn in the order in which you specify
the strings, with the first unit being drawn nearest to
the primary axis line.

TICKLEN The value for this property is now stored as double-
precision.

TICKVALUES The value for this property is now stored as double-
precision.

XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV

The value for these properties is now stored as
double-precision.

Keyword/Argument Description
What’s New in IDL 5.4 New and Enhanced IDL Objects

74 Chapter 1: Overview of New Features in IDL 5.4
IDLgrBuffer::GetTextDimensions

IDLgrBuffer::PickData

IDLgrClipboard::GetTextDimensions

IDLgrColorbar::ComputeDimensions

IDLgrColorbar::GetProperty

IDLgrColorbar::Init

Keyword/Argument Description

DESCENT The values returned in the variable you specify with
this keyword are now double-precision. Note that the
return value of this method is now double-precision.

Keyword/Argument Description

XYZLOCATION The values returned in this variable are now double-
precision.

Keyword/Argument Description

DESCENT The values returned in the variable you specify with
this keyword are now double-precision. Note that the
return value of this method is now double-precision.

Keyword/Argument Description

n/a This method now returns the dimensions of a colorbar
object as double-precision values.

Keyword/Argument Description

XRANGE, YRANGE,
ZRANGE

The values returned in the variable specified with
these keywords are now double-precision.

Keyword/Argument Description

TICKLEN The value for this property is now stored as double-
precision.
New and Enhanced IDL Objects What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 75
IDLgrContour::GetCTM

IDLgrContour::GetProperty

IDLgrContour::Init

TICKVALUES The value for this property is now stored as double-
precision.

XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV

The value for these properties is now stored as
double-precision.

Keyword/Argument Description

n/a This method now returns double-precision values.

Keyword/Argument Description

GEOM The values returned in the variable you specify with
this keyword are now either single or double-
precision, depending upon the precision used to store
the geometry.

XRANGE, YRANGE,
ZRANGE

The values returned in the variable you specify with
this keyword are now double-precision.

Keyword/Argument Description

Values The values specified with this argument are now
maintained as double-precision if the input data is of
type DOUBLE or if the DOUBLE_DATA keyword is
set. Otherwise, the data is maintained as single-
precision.

ANISOTROPY The values for this property are now stored as double-
precision.

C_VALUE The values for this property are now stored as double-
precision.

Keyword/Argument Description
What’s New in IDL 5.4 New and Enhanced IDL Objects

76 Chapter 1: Overview of New Features in IDL 5.4
IDLgrImage::GetCTM

DATA_VALUES The values stored in this property are maintained as
double-precision if the input data is of type DOUBLE
or if the DOUBLE_DATA keyword is set. Otherwise,
the values are maintained as single-precision.

DOUBLE_DATA Set this keyword to indicate that the object is to store
data provided by either the Values argument or the
DATA_VALUES keyword parameter in double-
precision floating point. Otherwise, the data is stored
in single-precision floating point. IDL converts any
value data already stored in the object to the requested
precision, if necessary.

DOUBLE_GEOM Set this keyword to indicate that the object is to store
data provided by any of the GEOMX, GEOMY, or
GEOMZ keyword parameters in double-precision
floating-point. Otherwise, the data is stored in single-
precision floating point. IDL converts any geometry
data already stored in the object to the requested
precision, if necessary.

GEOMX, GEOMY,
GEOMZ

The values stored in these properties are maintained
as double-precision if the input data is of type
DOUBLE or if the DOUBLE_DATA keyword is set.
Otherwise, the values are maintained as single-
precision.

MAX_VALUE,
MIN_VALUE,
TICKINTERVAL,
TICKLEN,
XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV

The values for these properties are now stored as
double-precision.

Keyword/Argument Description

n/a This method now returns double-precision values.

Keyword/Argument Description
New and Enhanced IDL Objects What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 77
IDLgrImage::GetProperty

IDLgrImage::Init

IDLgrLegend::ComputeDimensions

IDLgrLegend::GetProperty

IDLgrLegend::Init

Keyword/Argument Description

XRANGE, YRANGE,
ZRANGE

The values returned in the variable specified with
these keywords are now double-precision.

Keyword/Argument Description

DIMENSIONS,
LOCATION,
XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV

The values for these properties are now stored as
double-precision.

Keyword/Argument Description

n/a This method now returns double-precision values.

Keyword/Argument Description

XRANGE, YRANGE,
ZRANGE

The value for these properties is now stored as
double-precision.

Keyword/Argument Description

ITEM_THICK This keyword now accepts floating-point values.

XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV

The value for these properties is now stored as
double-precision.
What’s New in IDL 5.4 New and Enhanced IDL Objects

78 Chapter 1: Overview of New Features in IDL 5.4
IDLgrLight::GetCTM

IDLgrLight::Init

IDLgrModel::GetCTM

IDLgrModel::Init

IDLgrModel::Rotate

Keyword/Argument Description

n/a This method now returns double-precision values.

Keyword/Argument Description

LOCATION,
XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV

The values for these properties are now stored as
double-precision.

Keyword/Argument Description

n/a This method now returns double-precision values.

Keyword/Argument Description

TRANSFORM The value for this property is now stored as double-
precision.

Keyword/Argument Description

Axis, Angle This method now accepts these arguments as double-
precision values without converting them to single-
precision. The resulting transformation matrix is
stored in the object in double-precision.
New and Enhanced IDL Objects What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 79
IDLgrModel::Scale

IDLgrModel::Translate

IDLgrMPEG::Init

Keyword/Argument Description

Axis, Angle This method now accepts these arguments as double-
precision values without converting them to single-
precision. The resulting transformation matrix is
stored in the object in double-precision.

Keyword/Argument Description

Axis, Angle This method now accepts these arguments as double-
precision values without converting them to single-
precision. The resulting transformation matrix is
stored in the object in double-precision.

Keyword/Argument Description

BITRATE Set this keyword to a double-precision value to
specify the MPEG movie bit rate. Higher bit rates will
create higher quality MPEGs but will increase file
size. The following table describes the valid values:

• MPEG 1 — 0.1 to 104857200.0

• MPEG 2 — 0.1 to 429496729200.0

If you do not set this keyword, IDL computes the
BITRATE value based upon the value you have
specified for the QUALITY keyword. The value of
BITRATE returned by IDLgrMPEG::GetProperty is
either the value computed by IDL from the QUALITY
value or the last non-zero valid value stored in this
property.

Note - Only use the BITRATE keyword if changing
the QUALITY keyword value does not produce the
desired results. It is highly recommended to set the
BITRATE to at least several times the frame rate to
avoid unusable MPEG files or file generation errors.
What’s New in IDL 5.4 New and Enhanced IDL Objects

80 Chapter 1: Overview of New Features in IDL 5.4
IFRAME_GAP Set this keyword to a positive integer value that
specifies the number of frames between I frames to be
created in the MPEG file. I frames are full-quality
image frames that may have a number of predicted or
interpolated frames between them.

If you do not specify this keyword, IDL computes the
IFRAME_GAP value based upon the value you have
specified for the QUALITY keyword. The value of
IFRAME_GAP returned by
IDLgrMPEG::GetProperty is either the value
computed by IDL from the QUALITY value or the
last non-zero valid value stored in this property.

Note - Only use the IFRAME_GAP keyword if
changing the QUALITY keyword value does not
produce the desired results.

MOTION_VEC_LENGTH Set this keyword to an integer value specifying the
length of the motion vectors to be used to generate
predictive frames. The following table describes the
valid values:

• 1 — Small motion vectors.

• 2 — Medium motion vectors.

• 3 — Large motion vectors.

If you do not set this keyword, IDL computes the
MOTION_VEC_LENGTH value based upon the
value you have specified for the QUALITY keyword.
The value of MOTION_VEC_LENGTH returned by
IDLgrMPEG::GetProperty is either the value
computed by IDL from the QUALITY value or the
last non-zero valid value stored in this property.

Note - Only use the MOTION_VEC_LENGTH
keyword if changing the QUALITY value does not
produce the desired results.

Keyword/Argument Description
New and Enhanced IDL Objects What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 81
IDLgrPattern::Init

IDLgrPlot::GetCTM

IDLgrPlot::GetProperty

IDLgrPlot::Init

QUALITY Set this keyword to an integer value between 0 (low
quality) and 100 (high quality) inclusive to specify the
quality at which the MPEG stream is to be stored.
Higher quality values result in lower rates of time
compression and less motion prediction which
provide higher quality MPEGs but with substantially
larger file size. Lower quality factors may result in
longer MPEG generation times. The default is 50.

Note - Since MPEG uses JPEG (lossy) compression,
the original picture quality can’t be reproduced even
when setting QUALITY to its’ highest setting.

Keyword/Argument Description

PATTERN,
SPACING

These values are now specified in points rather than
pixels.

Keyword/Argument Description

n/a This method now returns double-precision values.

Keyword/Argument Description

ZRANGE The value for this property is now stored as double-
precision.

Keyword/Argument Description

X, Y The values specified with these arguments are now
maintained as double-precision if the input data is of
type DOUBLE or if the DOUBLE keyword is set.
Otherwise, they are stored as single-precision.

Keyword/Argument Description
What’s New in IDL 5.4 New and Enhanced IDL Objects

82 Chapter 1: Overview of New Features in IDL 5.4
IDLgrPolygon::GetCTM

IDLgrPolygon::GetProperty

IDLgrPolygon::Init

DATAX,

DATAY

The value for these properties is now stored as
double-precision if the input data is of type DOUBLE
or if the DOUBLE keyword is set. Otherwise, it is
stored as single-precision.

DOUBLE Set this keyword to indicate that data provided by any
of the X or Y arguments or DATAX or DATAY
keywords will be stored in this object as double-
precision floating-point.

MAX_VALUE,
MIN_VALUE,
XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV,
ZVALUE

The value for these properties is now stored as
double-precision.

Keyword/Argument Description

n/a This method now returns double-precision values.

Keyword/Argument Description

XRANGE, YRANGE,
ZRANGE

The value for these properties is now stored as
double-precision.

Keyword/Argument Description

X, Y, Z The value for these arguments is now stored as
double-precision if the input data is of type DOUBLE
or if the DOUBLE keyword is set. Otherwise, they are
stored as single-precision.

Keyword/Argument Description
New and Enhanced IDL Objects What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 83
IDLgrPolyline::GetCTM

IDLgrPolyline::GetProperty

IDLgrPolyline::Init

DATA The value for this property is now stored as double-
precision if the input data is of type DOUBLE or if the
DOUBLE keyword is set. Otherwise, it is stored as
single-precision.

DOUBLE Set this keyword to indicate that data provided by any
of the X, Y, or Z arguments or DATA keyword will
be stored in this object as double-precision floating-
point.

XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV

The value for these properties is now stored as
double-precision.

Keyword/Argument Description

n/a This method now returns double-precision values.

Keyword/Argument Description

XRANGE, YRANGE,
ZRANGE

The value for these properties is now stored as
double-precision.

Keyword/Argument Description

X, Y, Z The values specified with these arguments are now
maintained as double-precision if the input data is of
type DOUBLE or if the DOUBLE keyword is set.
Otherwise, it is stored as single-precision.

DATA The value for this property is now stored as double-
precision if the input data is of type DOUBLE or if the
DOUBLE keyword is set. Otherwise, it is stored as
single-precision.

Keyword/Argument Description
What’s New in IDL 5.4 New and Enhanced IDL Objects

84 Chapter 1: Overview of New Features in IDL 5.4
IDLgrPrinter::GetTextDimensions

IDLgrROI::Init

IDLgrSurface::GetCTM

DOUBLE Set this keyword to indicate that data provided by any
of the X, Y, or Z arguments or DATA keyword will
be stored in this object as double-precision floating-
point.

XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV

The value for these properties is now stored as
double-precision.

Keyword/Argument Description

DESCENT The values returned in the variable you specify with
this keyword are now double-precision. Note that the
return value for this method is now double-precision.

Keyword/Argument Description

X, Y, Z The values specified with these arguments are now
maintained as double-precision if the input data is of
type DOUBLE or if the DOUBLE keyword is set.
Otherwise, they are stored as single-precision.

DOUBLE Set this keyword to indicate that data provided by any
of the X, Y, or Z arguments or DATA keyword
(inherited) will be stored in this object as double-
precision floating-point.

XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV

The value for these properties is now stored as
double-precision.

Keyword/Argument Description

n/a This method now returns double-precision values.

Keyword/Argument Description
New and Enhanced IDL Objects What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 85
IDLgrSurface::GetProperty

IDLgrSurface::Init

IDLgrSymbol::Init

Keyword/Argument Description

XRANGE, YRANGE
ZRANGE

The values returned in the variable specified with
these keywords are now double-precision.

Keyword/Argument Description

X, Y, Z The values specified with these arguments are now
maintained as double-precision if the input data is of
type DOUBLE or if the DOUBLE keyword is set.
Otherwise, it is stored as single-precision.

DATAX, DATAY,
DATAZ

The value for these properties is now stored as
double-precision if the input data is of type DOUBLE
or if the DOUBLE keyword is set. Otherwise, it is
stored as single-precision.

DOUBLE Set this keyword to indicate that data provided by any
of the X, Y, or Z arguments or DATAX, DATAY, or
DATAZ keywords will be stored in this object as
double-precision floating-point.

MAX_VALUE,
MIN_VALUE,
SKIRT,
XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV

The value for these properties is now stored as
double-precision.

Keyword/Argument Description

SIZE The values for this property are nw stored as double-
precision.
What’s New in IDL 5.4 New and Enhanced IDL Objects

86 Chapter 1: Overview of New Features in IDL 5.4
IDLgrText::GetCTM

IDLgrText::GetProperty

IDLgrText::Init

IDLgrView::Init

IDLgrVolume::GetCTM

Keyword/Argument Description

n/a This method now returns double-precision data.

Keyword/Argument Description

XRANGE, YRANGE,
ZRANGE

The values returned in the variable specified with
these keywords are now double-precision.

Keyword/Argument Description

CHAR_DIMENSIONS,
LOCATIONS,
XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV

The values for these properties are now stored as
double-precision.

Keyword/Argument Description

DOUBLE If set, IDL calculates the transformations used for the
modeling and view transforms using double-precision
floating point arithmetic.

EYE,
VIEWPLANE,
ZCLIP

The values for these properties are now stored as
double-precision.

Keyword/Argument Description

n/a This method now returns double-precision values.
New and Enhanced IDL Objects What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 87
IDLgrVolume::GetProperty

IDLgrVolume::Init

IDLgrVRML::GetTextDimensions

IDLgrWindow::GetTextDimensions

IDLgrWindow::Pickdata

Keyword/Argument Description

XRANGE, YRANGE,
ZRANGE

The values returned in the variable specified with
these keywords are now double-precision.

Keyword/Argument Description

XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV

The values returned in the variable specified with
these keywords are now double-precision.

Keyword/Argument Description

DESCENT The values returned in the variable you specify with
this keyword are now double-precision.

Keyword/Argument Description

DESCENT The values returned in the variable you specify with
this keyword are now double-precision.

Keyword/Argument Description

XLOCATION,
YLOCATION,
ZLOCATION

The values returned in the variable specified with
these keywords are now double-precision.
What’s New in IDL 5.4 New and Enhanced IDL Objects

88 Chapter 1: Overview of New Features in IDL 5.4
New and Enhanced IDL Routines

This section describes the following:

• New IDL Routines

• New and Updated Keywords/Arguments to IDL Routines

• Updated Common Graphics Keywords

New IDL Routines

The following is a list of new functions, procedures, statements, and executive
commands added to IDL.

Routine Description

ARRAY_EQUAL This function provides a fast way to compare
data for equality in situations where the index
of the elements that differ are not of interest.
For best speed, ensure that the operands are the
same data type.

BESELK This function returns the K Bessel function of
order N for the argument X.

BREAK This statement immediately exits from a loop
(FOR, WHILE, REPEAT), CASE, or
SWITCH statement.

COLORMAP_APPLICABLE This function determines whether the current
visual class supports the use of a color map,
and if so, whether color map changes affect
pre-displayed Direct Graphics or if the
graphics must be redrawn to pick up color map
changes. Note that this routine was included in
previous releases of IDL but was
undocumented.

CONTINUE This statement immediately starts the next
iteration of the enclosing FOR, WHILE, or
REPEAT loop.
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 89
FILE_CHMOD This procedure allows the user to change the
current access permissions (modes) associated
with a file or directory.

FILE_DELETE This procedure deletes a file or empty
directory, if the process has the necessary
permissions to remove the file as defined by
the current operating system. FILE_CHMOD
can be used to change file protection settings.

FILE_EXPAND_PATH This function expands a given file or partial
directory name to its fully qualified name.

FILE_MKDIR This procedure creates a new directory, or
directories, with the default access permissions
for the current process. If a specified directory
has non-existent parent directories,
FILE_MKDIR automatically creates all the
intermediate directories as well.

FILE_TEST This function checks files for existence and
other attributes without first having to open the
file.

FILE_WHICH This function separates a specified file path
into its component directories, and searches
each directory in turn for a specific file. This
command is modeled after the UNIX
which(1) command.

HOUGH This function returns the Hough transform of a
two-dimensional image.

LAGUERRE This function returns the value of the
associated Laguerre polynomial.

LEGENDRE This function returns the value of the
associated Legendre polynomial.

MAKE_DLL This procedure builds a sharable library from
C language code which is suitable for use by
the dynamic linking features in IDL
(CALL_EXTERNAL, LINKIMAGE, and the
dynamically linkable modules (DLMs)).

Routine Description
What’s New in IDL 5.4 New and Enhanced IDL Routines

90 Chapter 1: Overview of New Features in IDL 5.4
MAP_2POINTS This function returns parameters such as
distance, azimuth, and path relating to the
great circle or rhumb line connecting two
points on a sphere.

MATRIX_MULTIPLY This function calculates the IDL matrix-
multiply operator (#) of two (possibly
transposed) arrays. This is more efficient than
in some situations.

MEMORY This function returns information on the
amount of dynamic memory currently in use
by the IDL session.

RADON This function returns the Radon transform of a
two-dimensional image.

SAVGOL This function returns the coefficients of a
Savitzky-Golay smoothing filter.

SOCKET This procedure, supported on UNIX or
Microsoft Windows platforms, opens a client
side TCP/IP Internet socket as an IDL file unit.
Such files can be used in the standard manner
with any Input/Output routines in IDL.

SPHER_HARM This function returns the value of the spherical
harmonic function.

SWITCH This statement selects one statement for
execution from multiple choices, depending
upon the value of an expression. This
statement is similar to the CASE statement.
Whereas CASE executes at most one
statement within the CASE block, SWITCH
executes the first matching statement and any
following statements in the SWITCH block.

TIMEGEN This function returns an array (with the
specified dimensions) of double-precision
floating-point values that represent Julian
date/times.

Routine Description
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 91
New and Updated Keywords/Arguments to IDL Routines

The following is a list of new and updated keywords and arguments to existing IDL
routines.

ASSOC

AXIS

BESELI, BESELJ, BESELK, BESELY

READ_PNG This procedure has been added to ease the
conversion for the removal of the READ_GIF
procedure from IDL. This new procedure has
the same functionality as the READ_PNG
function. When converting from the
READ_GIF procedure to the READ_PNG
procedure, note that READ_PNG accepts the
same arguments as READ_GIF but does not
accept the CLOSE and MULTIPLE keywords.

Keyword/Argument Description

n/a You can now use ASSOC to read data from
compressed files.

Keyword/Argument Description

X, Y, Z AXIS now accepts the X, Y, and/or Z arguments as
double-precision floating point values without
converting them to single-precision.

Keyword/Argument Description

N This argument can now be either an integer or a real
number.

Routine Description
What’s New in IDL 5.4 New and Enhanced IDL Routines

92 Chapter 1: Overview of New Features in IDL 5.4
BINOMIAL

BLK_CON

CALL_EXTERNAL

Keyword/Argument Description

P This argument can now be either a scalar or an array.

DOUBLE Set this keyword to force the computation to be done
in double-precision arithmetic.

GAUSSIAN Set this keyword to use the Gaussian approximation,
by using the normalized variable
Z = (V – NP)/SQRT(NP(1 – P)).

Keyword/Argument Description

DOUBLE Set this keyword to force the computation to be done
in double precision.

Keyword/Argument Description

AUTO_GLUE Set this keyword to enable the
CALL_EXTERNAL Auto Glue feature. Use of
AUTO_GLUE implies the PORTABLE
keyword.

CC If present, a template string to be used in
generating the C compiler command(s) to
compile the automatically generated glue
function. For a more complete description of this
keyword, see MAKE_DLL.

COMPILE_DIRECTORY Specifies the directory to use for creating the
necessary intermediate files and the final glue
function sharable library. For a more complete
description of this keyword, see MAKE_DLL.

EXTRA_CFLAGS If present, a string supplying extra options to the
command used to execute the C compiler. For a
more complete description of this keyword, see
MAKE_DLL.
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 93
EXTRA_LFLAGS If present, a string supplying extra options to the
command used to execute the linker. For a more
complete description of this keyword, see
MAKE_DLL.

IGNORE_EXISTING_GLUE Normally, if Auto Glue finds a pre-existing glue
function, it will use it without attempting to build
it again. Set IGNORE_EXISTING_GLUE to
override this caching behavior and force
CALL_EXTERNAL to rebuild the glue function
sharable library.

LD If present, a template string to be used in
generating the linker command to build the glue
function sharable library. For a more complete
description of this keyword, see MAKE_DLL.

NOCLEANUP If set, CALL_EXTERNAL will not remove
intermediate files generated in order to build the
glue function sharable library after the library has
been built. This keyword can be used to preserve
information for debugging in case of error, or for
additional information on how Auto Glue works.
For a more complete description of this keyword,
see MAKE_DLL.

SHOW_ALL_OUTPUT Auto Glue normally produces no output unless an
error prevents successful building of the glue
function sharable library. Set
SHOW_ALL_OUTPUT to see all output
produced by the process of building the library.
For a more complete description of this keyword,
see MAKE_DLL.

VERBOSE If set, VERBOSE causes CALL_EXTERNAL to
issue informational messages as it carries out the
task of locating, building, and executing the glue
function. For a more complete description of this
keyword, see MAKE_DLL.

Keyword/Argument Description
What’s New in IDL 5.4 New and Enhanced IDL Routines

94 Chapter 1: Overview of New Features in IDL 5.4
CEIL

CLOSE

CONTOUR

Keyword/Argument Description

L64 Set this keyword so that the result type is 64-bit
integer regardless of the input type.

Keyword/Argument Description

EXIT_STATUS Set this keyword to a named variable that will contain
the exit status reported by a UNIX child process
started via the UNIT keyword to SPAWN.

FORCE Set this keyword to force the file to be closed
regardless of any errors that occur in the process.

Keyword/Argument Description

X, Y, Z The X, Y and/or Z arguments are now accepted as
double-precision floating point vectors/arrays without
converting them to single-precision.

CLOSED Set CLOSED=0 along with PATH_INFO and/or
PATH_XY to return path information for contours
that are not closed.

LEVELS Now accepts a vector of double-precision floating
point values without converting them to single-
precision.

NLEVELS Should be a positive integer.

PATH_DOUBLE The new PATH_DOUBLE keyword has been added
to allow a choice as to whether PATH_* information
should be returned in single-precision or double-
precision.
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 95
CONVERT_COORD

PATH_FILENAME For this keyword, a secondary structure
(CONTOUR_DBL_HEADER) is introduced for the
case that the new PATH_DOUBLE keyword is set.
This structure is the same as the
CONTOUR_HEADER structure except that the
VALUE field is a double-precision (rather than
single-precision) floating point value.

PATH_INFO For this keyword, a secondary structure
(CONTOUR_DBL_PATH_STRUCTURE) is
introduced for the case that the new PATH_DOUBLE
keyword is set. This structure is the same as the
CONTOUR_PATH_STRUCTURE except that the
VALUE field is a double-precision (rather than a
single-precision) floating point value.

To return path information for contours that are not
closed, set CLOSED=0.

PATH_XY This keyword will now return an array of double-
precision (rather than single-precision) coordinate
values in the case that the new /PATH_DOUBLE
keyword is set.

To return path information for contours that are not
closed, set CLOSED=0.

Keyword/Argument Description

X, Y, Z Accepts the X, Y and/or Z arguments as double-
precision floating point vectors without converting
them to single-precision.

DOUBLE Set this keyword to specify the results should be
returned in double-precision.

Keyword/Argument Description
What’s New in IDL 5.4 New and Enhanced IDL Routines

96 Chapter 1: Overview of New Features in IDL 5.4
COORD2TO3

CREATE_VIEW

CURSOR

CURVEFIT

CV_COORD

CW_CLR_INDEX

Keyword/Argument Description

This routine now returns a three-element vector of
double-precision (rather than single-precision) values.

Keyword/Argument Description

AX, AY, AZ, PERSP,
XMAX, XMIN, YMAX,
YMIN, ZFAC, ZMAX,
ZMIN, ZOOM

These keywords now accept double-precision values
and will no longer be converted to single-precision
values.

Keyword/Argument Description

NORMAL, DATA If set, the X and Y arguments will contain double-
precision values (rather than single-precision values).

Keyword/Argument Description

DOUBLE Set this keyword to force the computation to be
performed in double-precision arithmetic.

Keyword/Argument Description

DOUBLE Set this keyword to force the computation to be done
in double-precision arithmetic.

Keyword/Argument Description

VALUE Set this keyword to the index of the color that is to be
initially selected. The default is the START_COLOR.
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 97
CW_FILESEL

DEVICE

Keyword/Argument Description

WARN_EXIST Set this keyword to produce a question dialog if the
user selects a file that already exists. This keyword is
useful when creating a “write” dialog. The default is
to allow any filename to be quietly accepted, whether
it exists or not.

Keyword/Argument Description

PRE_DEPTH (PS) Set this keyword to a value indicating the bit depth to
be used for the preview in the PostScript file. Valid
values are 1 (for black and white preview) and 8 (for
8-bit grayscale preview). This keyword applies only if
the PREVIEW keyword is nonzero. The default depth
is 8.

PRE_XSIZE (PS) Set this keyword to the width to be used for the
preview in the PostScript file. PRE_XSIZE is
specified in centimeters, unless the INCHES keyword
is set. This keyword applies only if the PREVIEW
keyword value is nonzero. The default is 1.77778
inches (128 pixels at 72dpi).

PRE_YSIZE (PS) Set this keyword to the height to be used for the
preview in the PostScript file. PRE_YSIZE is
specified in centimeters, unless the INCHES keyword
is set. This keyword applies only if the PREVIEW
keyword value is nonzero. The default is 1.77778
inches (128 pixels at 72dpi).
What’s New in IDL 5.4 New and Enhanced IDL Routines

98 Chapter 1: Overview of New Features in IDL 5.4
DIALOG_PICKFILE

DIALOG_READ_IMAGE

DIALOG_WRITE_IMAGE

DOUBLE

Keyword/Argument Description

FILTER Set this keyword to a string value or an array of
strings specifying the file types to be displayed in the
file list. This keyword is used to reduce the number of
files to choose from. Note that in UNIX, passing an
array using the FILTER keyword will result in the
inclusion of all files in the current directory.

Keyword/Argument Description

GET_PATH Set this keyword to a named variable in which the
path of the selection is returned.

Keyword/Argument Description

WARN_EXIST Set this keyword to produce a question dialog if the
user selects a file that already exists. The default is to
quietly overwrite the file.

Keyword/Argument Description

Expression This argument is the expression to be converted to
double-precision, floating-point.

Offset This argument is the offset from beginning of the
Expression data area.

Di When extracting fields of data, the Di arguments
specify the dimensions of the result. The dimension
parameters can be any scalar expression. Up to eight
dimensions can be specified. If no dimension
arguments are given, the result is taken to be scalar.
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 99
DRAW_ROI

FACTORIAL

FLOOR

FREE_LUN

Keyword/Argument Description

oROI Since the IDLanROI object now supports single or
double-precision vertices, this routine now supports
single or double-precision.

Keyword/Argument Description

N This argument can now be either a scalar or an array.

UL64 Set this keyword to return the results as unsigned 64-
bit integers.

Keyword/Argument Description

L64 Set this keyword so that the result type is 64-bit
integer regardless of the input type.

Keyword/Argument Description

EXIT_STATUS Set this keyword to a named variable that will contain
the exit status reported by a UNIX child process
started via the UNIT keyword to SPAWN.

FORCE Set this keyword to force the file to be closed
regardless of any errors that occur in the process.
What’s New in IDL 5.4 New and Enhanced IDL Routines

100 Chapter 1: Overview of New Features in IDL 5.4
FSTAT

GETENV

HANNING

HISTOGRAM

Keyword/Argument Description

n/a The following new fields are returned in the FSTAT
structure:

• ATIME — Date of last access

• CTIME — Creation date

• MTIME — Date of last modification

All are reported in seconds since 1 January 1970
UTC.

Keyword/Argument Description

ENVIRONMENT Set this keyword to return a string array containing all
environment variables set in the current process, one
variable per entry, in the format (Variable = value).
This keyword is for UNIX only.

Keyword/Argument Description

DOUBLE Set this keyword to force the computation to be done
in double precision.

Keyword/Argument Description

BINSIZE When the new NBINS keyword is specified and
BINSIZE is not specified, the default is BINSIZE =
(MAX – MIN) / (NBINS – 1).

L64 By default, the return value of HISTOGRAM is 32-bit
integer when possible, and 64-bit integer if the
number of elements being processed requires it. Set
L64 to force 64-bit integers to be returned in all cases.
L64 controls the type of Result as well as the output
from the REVERSE_INDICES keyword.
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 101
IBETA, IGAMMA

ISOCONTOUR

MAX If the new NBINS keyword is specified, the value for
MAX will be adjusted to NBINS*BINSIZE + MIN.
This ensures that the last bin has the same width as the
other bins.

NBINS Set this keyword to the number of bins to use.

REVERSE_INDICES Set this keyword to a named variable in which the list
of reverse indices is returned.

Keyword/Argument Description

DOUBLE Set this keyword to force the computation to be done
in double precision.

EPS Set this keyword to the relative accuracy, or tolerance.

ITER Set this keyword to a named variable that will contain
the actual number of iterations performed.

ITMAX Set this keyword to specify the maximum number of
iterations. The default value is 100.

Keyword/Argument Description

Outverts Vertices are now returned in double-precision floating
point if the new DOUBLE keyword is set.

C_VALUE Now accepts a vector of double-precision floating
point values, independent of the setting of the new
DOUBLE keyword.

DOUBLE This new keyword allows you to specify that
computations are to be carried out in double-precision
and to return resulting vertices as double-precision
values.

LEVEL_VALUES Now returns a vector of double-precision floating
point values, independent of the setting of the new
DOUBLE keyword.

Keyword/Argument Description
What’s New in IDL 5.4 New and Enhanced IDL Routines

102 Chapter 1: Overview of New Features in IDL 5.4
JULDAY

LABEL_DATE

LEEFILT

Keyword/Argument Description

Month, Day, Year, Hour,
Minute, Second

These arguments now accept array values.

Keyword/Argument Description

AM_PM, Set this keyword to a string of 2 names to be used for
the names of the AM and PM strings.

DATE_FORMATS This keyword now accepts format strings that include
codes for sub-seconds. DATE_FORMATS can now
also accept a string array for use with a multi-level
axis.

DAYS_OF_WEEK Set this keyword to a string array of 7 names to be
used for the days of the week.

OFFSET Set this keyword to a value representing the offset to
be added to each tick value before conversion to a
label. This keyword is usually used when the tick
values are measured relative to a certain starting time.

ROUND_UP Set this keyword to force times to be rounded up to
the smallest time unit that is present in the
DATE_FORMAT string.

Keyword/Argument Description

DOUBLE Set this keyword to force the computation to be
performed in double precision.
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 103
LINFIT

LIVE_CONTOUR

LIVE_PLOT

Keyword/Argument Description

COVAR Set this keyword to a named variable that will contain
the Covariance matrix of the coefficients.

MEASURE_ERRORS Set this keyword to a vector containing standard
measurement errors for each point Y[i]. This vector
must be the same length as X and Y.

Note - This keyword has replaced the SDEV
keyword. MEASURE_ERRORS has the same
definition and meaning as SDEV. For backwards
compatibility, the SDEV keyword is still accepted,
but new code should use the MEASURE_ERRORS
keyword.

YFIT Set this keyword equal to a named variable that will
contain the vector of calculated Y values.

Keyword/Argument Description

DOUBLE Set this keyword to force LIVE_CONTOUR to use
double-precision to draw the result. This has the same
effect as specifying data in the Zn argument using
IDL variables of type DOUBLE.

Keyword/Argument Description

DOUBLE Set this keyword to force LIVE_PLOT to use double-
precision to draw the result. This has the same effect
as specifying data in the YVector argument using IDL
variables of type DOUBLE.
What’s New in IDL 5.4 New and Enhanced IDL Routines

104 Chapter 1: Overview of New Features in IDL 5.4
LIVE_SURFACE

LMFIT

Keyword/Argument Description

DOUBLE Set this keyword to force LIVE_SURFACE to used
double-precision to draw the result. This has the same
effect as specifying data in the Data argument using
IDL variables of type DOUBLE.

Keyword/Argument Description

MEASURE_ERRORS Set this keyword to a vector containing standard
measurement errors for each point Y[i]. This vector
must be the same length as X and Y.

Note - This keyword has replaced the WEIGHTS
keyword. Code that uses the WEIGHTS keyword will
continue to work as before, but new code should use
the MEASURE_ERRORS keyword. Note that the
definition of the MEASURE_ERRORS keyword is
not the same as the WEIGHTS keyword. Using the
WEIGHTS keyword, SQRT(1/WEIGHTS[i])
represents the measurement error for each point Y[i].
Using the MEASURE_ERRORS keyword, the
measurement error for each point is represented as
simply MEASURE_ERRORS[i]. For an example, see
“LMFIT” on page 24.

SIGMA The definition of the SIGMA keyword has changed. If
you do not specify error estimates (via the
MEASURE_ERRORS keyword), then you are
assuming that your user-supplied model (or the
default quadratic), is the correct model for your data,
and therefore, no independent goodness-of-fit test is
possible. In this case, the values returned in SIGMA
are multiplied by the correction factor
SQRT(CHISQ/(N–M)), where N is the number of
points in X, and M is the number of coefficients. In
versions of IDL prior to 5.4, this correction factor was
not being applied. For an example, see “LMFIT” on
page 24.
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 105
MIN_CURVE_SURF

MPEG_OPEN

Keyword/Argument Description

CONST Set this keyword to fit data on the sphere with a
constant baseline, otherwise, data on the sphere is fit
with a baseline that contains a constant term plus
linear X, Y, and Z terms.

SPHERE Set this keyword to perform interpolation on the
surface of a sphere.

Keyword/Argument Description

BITRATE Set this keyword to a double-precision value to
specify the MPEG movie bit rate. Higher bit rates will
create higher quality MPEGs but will increase file
size. The following table describes the valid values:

• MPEG 1 — 0.1 to 104857200.0

• MPEG 2 — 0.1 to 429496729200.0

If you do not set this keyword, IDL computes the
BITRATE value based upon the value you have
specified for the QUALITY keyword.

Note - Only use the BITRATE keyword if changing
the QUALITY keyword value does not produce the
desired results. It is highly recommended to set the
BITRATE to at least several times the frame rate to
avoid unusable MPEG files or file generation errors.
What’s New in IDL 5.4 New and Enhanced IDL Routines

106 Chapter 1: Overview of New Features in IDL 5.4
IFRAME_GAP Set this keyword to a positive integer value that
specifies the number of frames between I frames to be
created in the MPEG file. I frames are full-quality
image frames that may have a number of predicted or
interpolated frames between them.

If you do not specify this keyword, IDL computes the
IFRAME_GAP value based upon the value you have
specified for the QUALITY keyword.

Note - Only use the IFRAME_GAP keyword if
changing the QUALITY keyword value does not
produce the desired results.

MOTION_VEC_LENGTH Set this keyword to an integer value specifying the
length of the motion vectors to be used to generate
predictive frames. Valid values include:

• 1 — Small motion vectors.

• 2 — Medium motion vectors.

• 3 — Large motion vectors.

If you do not set this keyword, IDL computes the
MOTION_VEC_LENGTH value based upon the
value you have specified for the QUALITY keyword.

Note - Only use the MOTION_VEC_LENGTH
keyword if changing the QUALITY value does not
produce the desired results.

QUALITY Set this keyword to an integer value between 0 (low
quality) and 100 (high quality) inclusive to specify the
quality at which the MPEG stream is to be stored.
Higher quality values result in lower rates of time
compression and less motion prediction which
provide higher quality MPEGs but with substantially
larger file size. Lower quality factors may result in
longer MPEG generation times. The default is 50.

Note - Since MPEG uses JPEG (lossy) compression,
the original picture quality can’t be reproduced even
when setting QUALITY to its highest setting.

Keyword/Argument Description
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 107
ONLINE_HELP

OPEN

OPLOT

PLOT

Keyword/Argument Description

TOPICS If set, the Topics dialog of the help system will be
displayed for the specified help file.

HTML_HELP If set, the Windows HTML Help system is used. All
other keywords to ONLINE_HELP behave as
specified, but the HTML help system is utilized. Note
that a default file extension of .chm is used, not .hlp.

Keyword/Argument Description

RAWIO The pre-existing keyword NOSTDIO has been
renamed RAWIO to reflect the fact that stdio may or
may not actually be used. IDL will continue to accept
NOSTDIO as a synonym for RAWIO.

STDIO Set this keyword to force the file to be opened via the
standard C I/O library (stdio) rather than any other
native OS API that might usually be used. This is not
generally necessary and is intended for use with
dynamically linked 3rd party code where the details of
how I/O is performed is relevant.

Keyword/Argument Description

X, Y OPLOT now accepts the X and/or Y arguments as
double-precision floating point vectors without
converting them to single-precision.

Keyword/Argument Description

X, Y PLOT now accepts X and/or Y arguments as double-
precision floating point vectors without converting
them to single-precision.
What’s New in IDL 5.4 New and Enhanced IDL Routines

108 Chapter 1: Overview of New Features in IDL 5.4
PLOTS

POLY_FIT

Keyword/Argument Description

X, Y, Z PLOTS now accepts the X, Y, and/or Z arguments as
double-precision floating point vectors without
converting them to single-precision.

Keyword/Argument Description

CHISQ Set this keyword to a named variable that will contain
the value of the chi-square goodness-of-fit.

COVAR This keyword has replaced the Corrm argument. For
backwards compatibility, the argument will still be
accepted.

MEASURE_ERRORS Set this keyword to a vector containing standard
measurement errors for each point Y[i]. This vector
must be the same length as X and Y.

Note - This keyword has replaced the POLYFITW
function. Note, however, that the definition of the
MEASURE_ERRORS keyword to POLY_FIT is
different from the definition of the Weights argument
to POLYFITW. In POLYFITW, SQRT(1/Weights[i])
represented the measurement error for each point Y[i].
Now, for consistency with other curve-fitting
routines, POLY_FIT defines the measurement error
for each point as MEASURE_ERRORS[i]. Code
using POLYFITW will continue to work as before,
but new code should use POLY_FIT. If you wish to
convert existing code using POLYFITW to use the
new MEASURE_ERRORS keyword to POLY_FIT,
you must change the values you supply. For an
example, see “POLY_FIT” on page 26.

SIGMA Set this keyword to a named variable that will contain
the 1-sigma uncertainty estimates for the returned
parameters.
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 109
POLYFILL

POLYSHADE

YERROR This keyword has replaced the Sigma argument. For
backwards compatibility, the argument will still be
accepted.

YFIT This keyword has replaced the Yfit argument. For
backwards compatibility, the argument will still be
accepted.

STATUS Set this keyword to a named variable to receive the
status of the operation. Possible status values are:

• 0 = Successful completion.

• 1 = Singular array (which indicates that the
inversion is invalid). Result is NaN.

• 2 = Warning that a small pivot element was used
and that significant accuracy was probably lost.

• 3 = Undefined (NaN) error estimate was
encountered.

Keyword/Argument Description

X, Y, Z Now accepts X, Y, and/or Z as double-precision
values without converting them to single-precision.

Keyword/Argument Description

X, Y, Z Now accepts X, Y, and/or Z as double-precision
values without converting them to single-precision.

Keyword/Argument Description
What’s New in IDL 5.4 New and Enhanced IDL Routines

110 Chapter 1: Overview of New Features in IDL 5.4
RANDOMN, RANDOMU

READ_JPEG

READ_PNG

READ_TIFF

Keyword/Argument Description

DOUBLE Set this keyword to force the computation to be done
using double-precision arithmetic.

LONG Set this keyword to return integer uniform random
deviates in the range [1...231 – 2]. If LONG is set, all
other keywords are ignored.

Keyword/Argument Description

UNIT When opening a file intended for use with the UNIT
keyword, if the filename does not end in .jpg, or
.jpeg, you must specify the STDIO keyword to
OPEN in order for the file to be compatible with
READ_JPEG.

Keyword/Argument Description

ORDER Set this keyword to indicate that the rows of the image
should be drawn from the bottom to top. By default
the rows are drawn from top to bottom.

Keyword/Argument Description

CHANNELS Set this keyword to a scalar or vector giving the
channel numbers to be returned for a multi-channel
image, starting with zero. The default is to return all
of the channels.
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 111
READU

REGRESS

INTERLEAVE For multi-channel images, set this keyword to one of
the following values to force the Result to have a
specific interleaving, regardless of the type of
interleaving in the file being read:

• 0 = Pixel interleaved: Result will have dimensions
[Channels, Columns, Rows].

• 1 = Scanline (row) interleaved: Result will have
dimensions [Columns, Channels, Rows].

• 2 = Planar interleaved: Result will have
dimensions [Columns, Rows, Channels].

If this keyword is not specified, the Result will always
be pixel interleaved, regardless of the type of
interleaving in the file being read. For files stored in
planar-interleave format, this keyword is ignored if
the R, G, and B arguments are specified.

Keyword/Argument Description

TRANSFER_COUNT This keyword is now accepted on all platforms.

Keyword/Argument Description

CHISQ Set this keyword equal to a named variable that will
contain the value of the chi-square goodness-of-fit.

Note - This keyword replaces the Chisq argument.
The argument is still accepted for backward
compatibility, but the keyword should be used in all
new code.

CONST Set this keyword to a named variable that will contain
the constant term of the fit.

Note - This keyword replaces the Const argument.
The argument is still accepted for backward
compatibility, but the keyword should be used in all
new code.

Keyword/Argument Description
What’s New in IDL 5.4 New and Enhanced IDL Routines

112 Chapter 1: Overview of New Features in IDL 5.4
CORRELATION Set this keyword to a named variable that will contain
the vector of linear correlation coefficients.

Note - This keyword replaces the R argument. The
argument is still accepted for backward compatibility,
but the keyword should be used in all new code.

DOUBLE Set this keyword to force computations to be done in
double-precision arithmetic.

FTEST Set this keyword to a named variable that will contain
the F-value for the goodness-of-fit test.

Note - This keyword replaces the Ftest argument. The
argument is still accepted for backward compatibility,
but the keyword should be used in all new code.

MCORRELATION Set this keyword to a named variable that will contain
the multiple linear correlation coefficient.

Note - This keyword replaces the Rmul argument. The
argument is still accepted for backward compatibility,
but the keyword should be used in all new code.

SIGMA Set this keyword to a named variable that will contain
the 1-sigma uncertainty estimates for the returned
parameters.

Note - This keyword replaces the Sigma argument.
The argument is still accepted for backward
compatibility, but the keyword should be used in all
new code.

STATUS Set this keyword to a named variable that will contain
the status of the operation. Possible status values are:

• 0 = successful completion

• 1 = singular array (which indicates that the
inversion is invalid)

• 2 = warning that a small pivot element was used
and that significant accuracy was probably lost.

Note - This keyword replaces the Status argument.
The argument is still accepted for backward
compatibility, but the keyword should be used in all
new code.

Keyword/Argument Description
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 113
RESOLVE_ROUTINE

REVERSE

MEASURE_ERRORS Set this keyword to a vector containing standard
measurement errors for each point Y[i]. This vector
must be the same length as X and Y.

Note - This keyword has replaced the Weights
argument. The definition of MEASURE_ERRORS is
different from the Weights argument that it has
replaced. Using the Weights argument,
SQRT(1/Weights[i]) represents the measurement error
for each point Y[i]. Now, for consistency with other
curve-fitting routines, the measurement error for each
point is represented as simply
MEASURE_ERRORS[i]. Also, the
RELATIVE_WEIGHT keyword is no longer
necessary. Now, if the MEASURE_ERRORS
keyword is not provided, then REGRESS assumes
you want no weighting. For an example of how to use
the new MEASURE_ERRORS keyword, see
“REGRESS” on page 27.

YFIT Set this keyword to a named variable that will contain
the vector of calculated Y values.

Note - This keyword replaces the Yfit argument. The
argument is still accepted for backward compatibility,
but the keyword should be used in all new code.

Keyword/Argument Description

COMPILE_FULL_FILE Set COMPILE_FULL_FILE to compile the entire file
regardless of encountering the specified routine in
Name.

Keyword/Argument Description

OVERWRITE Set this keyword to conserve memory by doing the
transformation “in-place.” THE result overwrites the
previous contents of the array.

Keyword/Argument Description
What’s New in IDL 5.4 New and Enhanced IDL Routines

114 Chapter 1: Overview of New Features in IDL 5.4
ROUND

SET_PLOT

SHADE_SURF

SIZE

Keyword/Argument Description

L64 Set this keyword so that the result type is 64-bit
integer regardless of the input type.

Keyword/Argument Description

Device This argument now accepts the “METAFILE” device.
For more information, see “Windows Metafile Format
(WMF) Support for Direct Graphics” on page 14.

Keyword/Argument Description

X, Y, Z These arguments now accept double-precision values
without converting them to single-precision.

Keyword/Argument Description

DIMENSIONS Set this keyword to return the dimensions of
Expression. The result is a 32-bit integer when
possible, and 64-bit integer if the number of elements
in Expression requires it. Set L64 to force 64-bit
integers to be returned in all cases.

L64 Set this keyword to force 64-bit integers to be
returned in all cases. In addition to affecting the
default result, L64 also affects the output from the
DIMENSIONS, N_ELEMENTS, and STRUCTURE
keywords.

N_ELEMENTS Set this keyword to return the number of data
elements in Expression. Setting this keyword is
equivalent to using the N_ELEMENTS function. The
result is a 32-bit integer when possible, and 64-bit
integer if the number of elements requires it.
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 115
SORT

SPAWN

STRUCTURE Set this keyword to return all available information
about Expression in a structure. The result is an
IDL_SIZE (32-bit) structure when possible, and an
IDL_SIZE64 structure otherwise.

Keyword/Argument Description

L64 Set this keyword so that the result type is 64-bit
integer regardless of the input type.

Keyword/Argument Description

ErrResult A named variable in which to place the error output
(stderr) from the child process. (UNIX and Windows
only.)

EXIT_STATUS Set this keyword to Return the exit status for the child
process. The meaning of this value is operating
system dependent

FORCE Set this keyword to force the file to be closed
regardless if errors occur in the process.

HIDE Set this keyword so that the command interpreter shell
window is minimized to prevent the user from seeing
it. (Windows only)

LOG_OUTPUT Set this keyword so that the command interpreter
window is minimized (as with HIDE) and all output is
diverted to the IDLDE log window. (Windows only)

NOSHELL This keyword is now supported on Windows
platforms.

NOWAIT Set this keyword so that the IDL process continues
executing in parallel with the subprocess. (Windows,
Macintosh, and VMS only)

Keyword/Argument Description
What’s New in IDL 5.4 New and Enhanced IDL Routines

116 Chapter 1: Overview of New Features in IDL 5.4
SURFACE

SVDC

NULL_STDIN Set this keyword so that the null device /dev/null
(UNIX) or NUL (Windows) is connected to the
standard input of the child process. (UNIX and
Windows only)

STDERR Set this keyword so that the child’s error output
(stderr) is combined with the standard output and
returned in Result. STDERR and the ErrResult
argument are mutually exclusive. (UNIX and
Windows only)

Keyword/Argument Description

X, Y, Z Now accepts double-precision values without
converting them to single-precision.

SKIRT Now accepts double-precision values without
converting them to single-precision.

Keyword/Argument Description

ITMAX Set this keyword to specify the maximum number of
iterations. The default value is 30.

Keyword/Argument Description
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 117
SVDFIT

Keyword/Argument Description

MEASURE_ERRORS Set this keyword to a vector containing standard
measurement errors for each point Y[i]. This vector
must be the same length as X and Y.

Note - The WEIGHTS keyword is obsolete and has
been replaced by the MEASURE_ERRORS keyword.
Code that uses the WEIGHTS keyword will continue
to work as before, but new code should use the
MEASURE_ERRORS keyword. Note that the
definition of the MEASURE_ERRORS keyword is
not the same as the WEIGHTS keyword. Using the
WEIGHTS keyword, 1/WEIGHTS[i] represents the
measurement error for each point Y[i]. Using the
MEASURE_ERRORS keyword, the measurement
error is represented as simply
MEASURE_ERRORS[i]. For an example, see
“SVDFIT” on page 29.

SIGMA The definition of the SIGMA keyword has changed. If
you do not specify error estimates (via the
MEASURE_ERRORS keyword), then you are
assuming that the polynomial (or your user-supplied
model) is the correct model for your data, and
therefore, no independent goodness-of-fit test is
possible. In this case, the values returned in SIGMA
are multiplied by the correction factor
SQRT(CHISQ/(N–M)), where N is the number of
points in X, and M is the number of coefficients. In
versions of IDL prior to 5.4, this correction factor was
not being applied. For an example, see “SVDFIT” on
page 29.
What’s New in IDL 5.4 New and Enhanced IDL Routines

118 Chapter 1: Overview of New Features in IDL 5.4
SYSTIME

T3D

TRIGRID

Keyword/Argument Description

ElapsedSeconds If the SecondsFlag argument (previously called Arg)
is zero, the ElapsedSeconds argument may be set to
the number of seconds past 1 January 1970 UTC. In
this case, SYSTIME returns the corresponding
date/time string (rather than the string for the current
time). The returned date/time string is adjusted for the
local time zone, unless the UTC keyword is set.

UTC Set this keyword to specify that the value returned by
SYSTIME is to be returned in Universal Time
Coordinated (UTC) rather than being adjusted for the
current time zone. UTC time is defined as Greenwich
Mean Time updated with leap seconds. UTC can be
used with the JULIAN keyword.

Keyword/Argument Description

OBLIQUE
PERSPECTIVE
ROTATE
SCALE
TRANSLATE

These keywords now accept double-precision values
(without conversion to single-precision).

Keyword/Argument Description

XOUT, YOUT Set these keywords to a vector specifying the output
grid X and Y values. If these keywords are supplied,
the GS and Limits arguments are ignored. Use these
keywords to specify irregularly spaced rectangular
output grids.
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 119
TV

TVCRS

TVSCL

VALUE_LOCATE

VERT_T3D

Keyword/Argument Description

X, Y Now accepts X and Y as double-precision values
without converting them to single-precision.

Keyword/Argument Description

X, Y Now accepts X and Y as double-precision values
without converting them to single-precision.

Keyword/Argument Description

X, Y Now accepts X and Y as double-precision values
without converting them to single-precision.

Keyword/Argument Description

L64 Set this keyword so that the result type is 64-bit
integer regardless of the input type.

Keyword/Argument Description

DOUBLE Set this keyword so that the results are returned in
double-precision.
What’s New in IDL 5.4 New and Enhanced IDL Routines

120 Chapter 1: Overview of New Features in IDL 5.4
WHERE

WRITE_JPEG

WRITE_PNG

Keyword/Argument Description

COMPLEMENT Set this keyword to a named variable that receives the
subscripts of the zero elements of Array_Expression.
These are the subscripts that are not returned in
Result. Together, Result and COMPLEMENT specify
every subscript in Array_Expression. If there are no
zero elements in Array_Expression, COMPLEMENT
returns a scalar integer with the value -1.

NCOMPLEMENT Set this keyword to a named variable that receives the
number of zero elements found in Array_Expression.
This value is the number of subscripts that will be
returned via the COMPLEMENT keyword if it is
specified.

L64 Set this keyword so that the result type is 64-bit
integer regardless of the input type.

Keyword/Argument Description

UNIT When opening a file intended for use with the UNIT
keyword, if the filename does not end in .jpg, or
.jpeg, you must specify the STDIO keyword to
OPEN in order for the file to be compatible with
WRITE_JPEG.

Keyword/Argument Description

ORDER Set this keyword to indicate that the rows of the image
should be written from the bottom to top. By default,
the rows are written from top to bottom.
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 121
WRITEU

XINTERANIMATE

Keyword/Argument Description

TRANSFER_COUNT Now accepted on all platforms.

Keyword/Argument Description

MPEG_BITRATE Set this keyword to a double-precision value to
specify the MPEG movie bit rate. Higher bit rates will
create higher quality MPEGs but will increase file
size. The following table describes the valid values:

• MPEG 1 — 0.1 to 104857200.0

• MPEG 2 — 0.1 to 429496729200.0

If you do not set this keyword, IDL computes the
MPEG_BITRATE value based upon the value you
have specified for the MPEG_QUALITY keyword.

Note - Only use the MPEG_BITRATE keyword if
changing the MPEG_QUALITY keyword value does
not produce the desired results. It is highly
recommended to set the MPEG_BITRATE to at least
several times the frame rate to avoid unusable MPEG
files or file generation errors.

MPEG_IFRAME_GAP Set this keyword to a positive integer value that
specifies the number of frames between I frames to be
created in the MPEG file. I frames are full-quality
image frames that may have a number of predicted or
interpolated frames between them.

If you do not specify this keyword, IDL computes the
MPEG_IFRAME_GAP value based upon the value
you have specified for the MPEG_QUALITY
keyword.

Note - Only use the MPEG_IFRAME_GAP keyword
if changing the MPEG_QUALITY keyword value
does not produce the desired results.
What’s New in IDL 5.4 New and Enhanced IDL Routines

122 Chapter 1: Overview of New Features in IDL 5.4
XYOUTS

MPEG_MOTION_VEC_
LENGTH

Set this keyword to an integer value specifying the
length of the motion vectors to be used to generate
predictive frames. Valid values include:

• 1 — Small motion vectors.

• 2 — Medium motion vectors.

• 3 — Large motion vectors.

If you do not set this keyword, IDL computes the
MPEG_MOTION_VEC_LENGTH value based upon
the value you have specified for the
MPEG_QUALITY keyword.

Note - Only use the
MPEG_MOTION_VEC_LENGTH keyword if
changing the MPEG_QUALITY value does not
produce the desired results.

MPEG_QUALITY Set this keyword to an integer value between 0 (low
quality) and 100 (high quality) inclusive to specify the
quality at which the MPEG stream is to be stored.
Higher quality values result in lower rates of time
compression and less motion prediction which
provide higher quality MPEGs but with substantially
larger file size. Lower quality factors may result in
longer MPEG generation times. The default is 50.

Note - Since MPEG uses JPEG (lossy) compression,
the original picture quality can’t be reproduced even
when setting QUALITY to its highest setting.

Keyword/Argument Description

X, Y Now accepts X and Y as double-precision values
without converting them to single-precision.

Keyword/Argument Description
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 123
Updated Common Graphics Keywords

The following is a list of updated common graphics keywords to existing IDL
routines.

CLIP

[XYZ]RANGE

[XYZ]TICKFORMAT

Affected Routines Description

CONTOUR,
DRAW_ROI, OPLOT,
PLOT, PLOTS,
POLYFILL, SURFACE,
XYOUTS

This keyword now accepts a vector of double-
precision values without converting them to single-
precision.

Affected Routines Description

AXIS, CONTOUR,
PLOT, SHADE_SURF,
SURFACE

This keyword now accepts a 2-element vector of
double-precision values without converting them to
single-precision.

Affected Routines Description

AXIS, CONTOUR,
PLOT,
SHADE_SURF,
SURFACE

1. This keyword may now be set to either a single
string or an array of strings. Each string corresponds
to a level of the axis.

2. If any of the strings is the name of a callback
function, the third argument to that function (that is
the argument indicating the value of the tickmark)
will be double-precision.

3. If any of the strings is the name of a callback
function and if the [XYZ]TICKUNITS keyword is
set to one or more non-empty strings, the callback
function will be called with four parameters: Axis,
Index, Value and Level, where Axis, Index, and
Value are the same as before, and Level is the Index
of the axis level for the current tick value to be
labelled (Level indices start at 0).
What’s New in IDL 5.4 New and Enhanced IDL Routines

124 Chapter 1: Overview of New Features in IDL 5.4
[XYZ]TICK_GET

[XYZ]TICKINTERVAL

[XYZ]TICKLAYOUT

Affected Routines Description

AXIS, CONTOUR,
PLOT, SHADE_SURF,
SURFACE

The value returned is now a vector of double-
precision floating point values.

Affected Routines Description

AXIS, CONTOUR,
PLOT, SHADE_SURF,
SURFACE

Set this keyword to a scalar to indicate the interval
between major tick marks for the first axis level.

Affected Routines Description

AXIS, CONTOUR,
PLOT, SHADE_SURF,
SURFACE

Set this keyword to a scalar that indicates the style to
draw each level of the axis.Valid values are:

• 0 — The axis line, major tick marks, and tick
labels are drawn.

• 1 — Only the labels for the major tick marks are
drawn.

• 2 — Each major tick interval is outlined by a box.
New and Enhanced IDL Routines What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 125
[XYZ]TICKUNITS

[XYZ]TICKV

Affected Routines Description

AXIS, CONTOUR,
PLOT, SHADE_SURF,
SURFACE

Set this keyword to a string (or vector of strings) to
indicate the units to be used for axis tick labeling.
Valid values are:

• “Numeric” (the default)

• “Year”

• “Month”

• “Day”

• “Hour”

• “Minute”

• “Second”

• “Time” — Use this value to indicate that the units
are generic time units. IDL will compute
appropriate default intervals and tick formats
based on the range of values covered by the axis.

You can specify more than one type of unit. The axis
levels will be drawn in the order in which you specify
the strings with the first unit being drawn nearest to
the primary axis line.

Affected Routines Description

AXIS, CONTOUR,
PLOT, SHADE_SURF,
SURFACE

[XYZ]TICKV will now accept a vector of double-
precision values without converting them to single-
precision.
What’s New in IDL 5.4 New and Enhanced IDL Routines

126 Chapter 1: Overview of New Features in IDL 5.4
New and Updated System Variables

The following system variables have been added or updated in IDL 5.4:

System Variable Description

!MAKE_DLL A new system variable used to configure how IDL
uses the standard system C compiler and linker to
generate sharable libraries for the current platform.
The AUTO_GLUE keyword to the
CALL_EXTERNAL function and MAKE_DLL
procedure uses the standard system C compiler and
linker to generate sharable libraries that can be used
by IDL in various contexts (CALL_EXTERNAL,
DLMs, LINKIMAGE).

For more information, see “!MAKE_DLL System
Variable” on page 196.

!P.T !P.T has changed from a single-precision 4-by-4
array of floating-point values to a double-precision
floating-point array of values.

!VERSION The !VERSION system variable has two new fields
called MEMORY_BITS and FILE_OFFSET_BITS
that tell you how many bits are used by the current
IDL to access memory and files, respectively.

![XYZ].CRANGE ![XYZ].CRANGE, formerly a 2-element vector of
single-precision floating point values, is now a 2-
element vector of double-precision floating point
values.

![XYZ].RANGE ![XYZ].RANGE, formerly a 2-element vector of
single-precision floating point values, is now a 2-
element vector of double-precision floating point
values.

![XYZ].S ![XYZ].S, formerly a 2-element vector of single-
precision floating point values, is now a 2-element
vector of double-precision floating point values.
New and Updated System Variables What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 127
![XYZ].TICKFORMAT The third argument (that is, the argument indicating
the value at the tick mark) for any callback
functions set via the ![XYZ].TICKFORMAT field
will now become a double-precision floating point
value (rather than a single-precision floating point
value).

![XYZ].TICKLAYOUT ![XYZ].TICKLAYOUT is a scalar that indicates
the style to be used to draw each level of the axis.

![XYZ].TICKINTERVAL ![XYZ].TICKINTERVAL is a scalar indicating the
interval between major tick marks for the first axis
level. This setting takes precedence over
![XYZ].TICKS.

![XYZ].TICKUNITS ![XYZ].TICKUNITS is a string (or a vector of
strings) indicating the units to be used for axis tick
labeling.

![XYZ].TICKV ![XYZ].TICKV, formerly a vector of single-
precision floating point values, is now a vector of
double-precision floating point values.

System Variable Description
What’s New in IDL 5.4 New and Updated System Variables

128 Chapter 1: Overview of New Features in IDL 5.4
Features Obsoleted in IDL 5.4

Obsoleted Routines

The following routines were present in IDL Version 5.3 but became obsolete in IDL
Version 5.4. These routines have been replaced with new routines or new keywords to
existing routines that offer enhanced functionality. These obsoleted routines should
not be used in new IDL code.

Obsoleted Keywords and Arguments

The following keywords and arguments became obsolete in IDL Version 5.4. These
keywords and arguments have been replaced with new routines or new keywords to
existing routines that offer enhanced functionality. These obsoleted keywords and
arguments should not be used in new IDL code.

Routine Replaced by

POLYFITW POLY_FIT, MEASURE_ERRORS keyword

RIEMANN RADON

Table 1-8: Routines Obsoleted in IDL 5.4

Routine Keyword/Argument Description

LINFIT SDEV This keyword has been replaced by
the MEASURE_ERRORS keyword.
The definition of the
MEASURE_ERRORS keyword is
identical to that of the SDEV
keyword. The SDEV keyword is still
accepted for backwards compatibility.

Table 1-9: Keywords/Arguments Obsoleted in IDL 5.4
Features Obsoleted in IDL 5.4 What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 129
LMFIT WEIGHTS This keyword has been replaced by
the MEASURE_ERRORS keyword.
Code that uses the WEIGHTS
keyword will continue to work as
before, but new code should use the
MEASURE_ERRORS keyword. Note
that the definition of the
MEASURE_ERRORS keyword is not
the same as the WEIGHTS keyword.
Using the WEIGHTS keyword,
SQRT(1/WEIGHTS[i]) represents the
measurement error for each point Y[i].
Using the MEASURE_ERRORS
keyword, the measurement error for
each point is represented as simply
MEASURE_ERRORS[i].

OPEN BINARY This keyword is no longer necessary
on Windows for input/output. Still
accepted, but quietly ignored, for
backward compatibility.

NOAUTOMODE This keyword is no longer necessary
on Windows for input/output. Still
accepted, but quietly ignored, for
backward compatibility.

NOSTDIO This keyword has been renamed
RAWIO to reflect the fact that stdio
may or may not actually be used. Still
accepted as a synonym for RAWIO.

Routine Keyword/Argument Description

Table 1-9: Keywords/Arguments Obsoleted in IDL 5.4
What’s New in IDL 5.4 Features Obsoleted in IDL 5.4

130 Chapter 1: Overview of New Features in IDL 5.4
POLY_FIT Yfit The Yfit argument has been replaced
by the YFIT keyword. Code using this
argument will continue to work as
before, but new code should use the
keyword instead.

Yband The Yband argument has been
replaced by the YBAND keyword.
Code using this argument will
continue to work as before, but new
code should use the keyword instead.

Sigma The Sigma argument has been
replaced by the YERROR keyword.
Code using this argument will
continue to work as before, but new
code should use the keyword instead.

Corrm The Corrm argument has been
replaced by the COVAR keyword.
Code using this argument will
continue to work as before, but new
code should use the keyword instead.

Routine Keyword/Argument Description

Table 1-9: Keywords/Arguments Obsoleted in IDL 5.4
Features Obsoleted in IDL 5.4 What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 131
REGRESS Weights The Weights argument has been
replaced by the
MEASURE_ERRORS keyword.
Code that uses the Weights argument
will continue to work as before, but
new code should use the
MEASURE_ERRORS keyword
instead. Note that the definition of the
MEASURE_ERRORS keyword is
different from that of the Weights
argument. Using the Weights
argument, SQRT(1/Weights[i])
represents the measurement error for
each point Y[i]. Using
MEASURE_ERRORS, the
measurement error for each point is
represented as simply
MEASURE_ERRORS[i]. Also note
that the RELATIVE_WEIGHTS
keyword is not necessary when using
the MEASURE_ERRORS keyword.

Yfit The Yfit argument has been replaced
by the YFIT keyword.

Const The Const argument has been replaced
by the CONST keyword.

Sigma The Sigma argument has been
replaced by the SIGMA keyword.

Ftest The Ftest argument has been replaced
by the FTEST keyword.

Routine Keyword/Argument Description

Table 1-9: Keywords/Arguments Obsoleted in IDL 5.4
What’s New in IDL 5.4 Features Obsoleted in IDL 5.4

132 Chapter 1: Overview of New Features in IDL 5.4
REGRESS
(continued)

R The R argument has been replaced by
the CORRELATION keyword.

Rmul The Rmul argument has been replaced
by the MCORRELATION keyword.

Chisq The Chisq argument has been replaced
by the CHISQR keyword.

Status The Status argument has been
replaced by the STATUS keyword.

RELATIVE_WEIGHT This keyword is no longer necessary.
Code using the Weights argument and
RELATIVE_WEIGHT keyword will
continue to work as before, but new
code should use the
MEASURE_ERRORS keyword, for
which case the RELATIVE_WEIGHT
keyword is not necessary. Using the
Weights argument, it was necessary to
specify the RELATIVE_WEIGHT
keyword if no weighting was desired.
This is not the case with the
MEASURE_ERRORS keyword—
when MEASURE_ERRORS is
omitted, REGRESS assumes you want
no weighting.

Routine Keyword/Argument Description

Table 1-9: Keywords/Arguments Obsoleted in IDL 5.4
Features Obsoleted in IDL 5.4 What’s New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 133
SVDFIT WEIGHTS This keyword has been replaced by
the MEASURE_ERRORS keyword.
Code that uses the WEIGHTS
keyword will continue to work as
before, but new code should use the
MEASURE_ERRORS keyword. Note
that the definition of the
MEASURE_ERRORS keyword is not
the same as the WEIGHTS keyword.
Using the WEIGHTS keyword,
1/WEIGHTS[i] represents the
measurement error for each point Y[i].
Using the MEASURE_ERRORS
keyword, the measurement error is
represented as simply
MEASURE_ERRORS[i].

Routine Keyword/Argument Description

Table 1-9: Keywords/Arguments Obsoleted in IDL 5.4
What’s New in IDL 5.4 Features Obsoleted in IDL 5.4

134 Chapter 1: Overview of New Features in IDL 5.4
Platforms Supported in this Release

IDL 5.4 supports the following platforms and operating systems:

† For UNIX, the supported versions indicate that IDL was either built (the lowest
version listed) or tested on that version. You can install and run IDL on other versions
that are binary compatible with those listed.

†† IDL 5.4 was built on the Linux 2.2 kernel with glibc 2.1 using Red Hat Linux. If
your version of Linux is compatible with these, it is possible that you can install and
run IDL on your version.

††† Includes G3, G4 and iMac

Platform Vendor Hardware Operating
System

Supported
Versions

VMS Compaq Alpha VMS 7.1

UNIX† Compaq Alpha Tru64 UNIX 4.0

Compaq Alpha Linux Red Hat 6.2††

HP PA-RISC HP-UX 10.20, 11.0

IBM RS/6000 AIX 4.3

Intel Intel x86 Linux Red Hat 6.0,
6.2††

SGI Mips IRIX 6.4, 6.5

SUN SPARC Solaris 2.6, 7, 8

SUN SPARC
(64-bit Ultra)

Solaris 7, 8

SUN Intel x86 Solaris 2.6, 7

Windows Microsoft Intel x86 Windows 95b, 98,
NT 4.0, 2000

Macintosh Apple PowerMAC††† MacOS 8.x, 9.x

Table 1-10: Platforms Supported in IDL 5.4
Platforms Supported in this Release What’s New in IDL 5.4

Chapter 2:

Date/Time Plotting
in IDL

This chapter contains the following topics:
Overview . 136
How to Generate Date/Time Data 138

Displaying Date/Time Data on an Axis in
Direct Graphics . 140
Displaying Date/Time Data on an Axis in
Object Graphics . 148
What’s New in IDL 5.4 135

136 Chapter 2: Date/Time Plotting in IDL
Overview

Dates and times are among the many types of information that numerical data can
represent. IDL provides a number of routines that offer specialized support for
generating, analyzing, and displaying date- and time- based data (herein referred to as
date/time data).

Julian Dates and Times

Within IDL, dates and times are typically stored as Julian dates. A Julian date is
defined to be the number of days elapsed since noon on January 1, 4713 BCE.
Following the astronomical convention, a Julian day is defined to start at 12pm
(noon). The following table shows a few examples of calendar dates and their
corresponding Julian dates.

Julian dates can also include fractional portions of a day, thereby incorporating hours,
minutes, and seconds. If the day fraction is included in a Julian date, it is represented
as a double-precision floating point value. The day fraction is computed as follows:

One advantage of using Julian dates to represent dates and times is that a given
date/time can be stored within a single variable (rather than storing the year, month,
day, hour, minute, and second information in six different variables). Because each
Julian date is simply a number, IDL’s numerical routines can be applied to Julian
dates just as for any other type of number.

Calendar Date Julian Date

January 1, 4713 B.C.E., at 12pm 0

January 2, 4713 B.C.E., at 12pm 1

January 1, 2000 at 12pm 2451545

Table 2-1: Example Julian Dates

dayFraction
hour
24.d
------------ minute

1440.d
------------------ ondssec

86400.d
---------------------+ +=
Overview What’s New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 137
Precision of Date/Time Data

The precision of any numerical value is defined as the smallest possible number that
can be added to that value that produces a new value different from the first.
Precision is typically limited by the data type of the variable used to store the number
and the magnitude of the number itself. Within IDL, the following guide should be
used when choosing a data format for date/time data:

• Time values that require a high precision, and that span a range of a few days
or less, should be stored as double-precision values in units of time elapsed
since the starting time, rather than in Julian date format. An example would be
the seconds elapsed since the beginning of an experiment. In this case, the data
can be treated within IDL as standard numeric data without the need to utilize
IDL’s specialized date/time features.

• Date values that do not include the time of day may be stored as long-integer
Julian dates. The Julian date format has the advantage of being compact (one
value per date) and being evenly spaced in days. As an example, January 1st
for the years 2000, 2001, and 2002 can be stored as Julian days 2451545,
2451911, and 2452276. The precision of this format is 1 day.

• Date values where it is necessary to include the time of day can be stored as
double-precision Julian dates, with the time included as a day fraction.
Because of the large magnitude of the Julian date (such as Julian day 2451545
for 1 January 2000), the precision of most Julian dates is limited to 1
millisecond (0.001 seconds).

To determine the precision of a Julian date/time value, you can use the IDL
MACHAR function:

; Set date to January 1, 2000, at 12:15pm
julian = JULDAY(1,1,2000,12,15,0)

; get machine characteristics
machine = MACHAR(/DOUBLE)

; multiply by floating-point precision
precision = julian*machine.eps

; convert to seconds
PRINT, precision*86400d0
What’s New in IDL 5.4 Overview

138 Chapter 2: Date/Time Plotting in IDL
How to Generate Date/Time Data

The TIMEGEN function returns an array of double precision floating point values
that represent date/time in terms of Julian dates. The first value of the returned array
corresponds to a start date/time, and each subsequent value corresponds to the start
date/time plus that array element's one-dimensional subscript multiplied by a step
size for a given date/time unit. Unlike the other array generation routines in IDL,
TIMEGEN includes a START keyword, which is necessary if the starting date/time
is originally provided in calendar (month, day, year) form.

The following example begins with a start date of March 1, 2000 and increments
every month for a full year:

date_time = TIMEGEN(12, UNIT = 'Months', $
START = JULDAY(3, 1, 2000))

where the UNIT keyword is set to 'Months' to increment by month and the START
keyword is set to the Julian date form of March 1, 2000.

The results of the above call to TIMEGEN can be output using either of the following
methods:

1. Using the CALDAT routine to convert the Julian dates to calendar dates:

CALDAT, date_time, month, day, year
FOR i = 0, (N_ELEMENTS(date_time) - 1) DO PRINT, $

month[i], day[i], year[i], $
FORMAT = '(i2.2, "/", i2.2, "/", i4)'

2. Using the calendar format codes:

PRINT, date_time, format = '(C(CMOI2.2, "/", CDI2.2, "/", CYI))'

The resulting calendar dates are printed out as follows:

03/01/2000
04/01/2000
05/01/2000
06/01/2000
07/01/2000
08/01/2000
09/01/2000
10/01/2000
11/01/2000
12/01/2000
01/01/2001
02/01/2001
How to Generate Date/Time Data What’s New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 139
The TIMEGEN routine contains several keywords to provide specific date/time data
generation. For more information, see TIMEGEN in the IDL Reference Guide.
What’s New in IDL 5.4 How to Generate Date/Time Data

140 Chapter 2: Date/Time Plotting in IDL
Displaying Date/Time Data on an Axis in
Direct Graphics

You can display date/time data on plots, contours, and surfaces through the tick
settings of the date/time axis. Date/time data can be displayed on any axis (x, y or z).
The date/time data is stored as Julian dates, but the LABEL_DATE function and
AXIS keywords allow you to display this data as calendar dates. The following
examples show how to display one-dimensional and two-dimensional date/time data.

Displaying Date/Time Data on a Plot Display

Date/time data usually comes from measuring data values at specific times. For
example, the displacement (in inches) of an object might be recorded at every second
for 37 seconds after the initial recording of 59 minutes and 30 seconds after 2 o'clock
pm (14 hundred hours) on the 30th day of March in the year 2000 as follows

number_samples = 37
date_time = TIMEGEN(number_samples, UNITS = 'Seconds', $

START = JULDAY(3, 30, 2000, 14, 59, 30))
displacement = SIN(10.*!DTOR*FINDGEN(number_samples))

Normally, this type of data would be imported into IDL from a data file. However,
this section is designed specifically to show how to display date/time data, not how to
import data from a file; therefore, the data for this example is created with the above
IDL commands.

Before displaying this one-dimensional data with the PLOT routine, the format of the
date/time values is specified through the LABEL_DATE routine as follows

date_label = LABEL_DATE(DATE_FORMAT = ['%I:%S'])

where %I represents minutes and %S represents seconds.

The resulting format is specified in the call to the PLOT routine with the
XTICKFORMAT keyword:

PLOT, date_time, displacement, /XSTYLE, $
; displaying titles.
TITLE = 'Measured Signal', $
XTITLE = 'Time (seconds)', $
YTITLE = 'Displacement (inches)', $
; applying date/time formats to X-axis labels.
XTICKFORMAT = 'LABEL_DATE', $
XTICKUNITS = 'Time', $
XTICKINTERVAL = 5
Displaying Date/Time Data on an Axis in Direct Graphics What’s New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 141
The XTICKUNITS keyword is set to note the tick labels contain date/time data. The
XTICKINTERVAL keyword is set to place the major tick marks at every five second
interval. These keyword settings produce the following results:

The above display shows the progression of the date/time variable, but it does not
include all of the date/time data we generated with the TIMEGEN routine. This data
also includes hour, month, day, and year information. IDL can display this
information with additional levels to the date/time axis. You can control the number
of levels to draw and the units used at each level with the XTICKUNITS keyword.
You can specify the formatting for these levels by changing the DATE_FORMAT
keyword setting to the LABEL_DATE routine:

date_label = LABEL_DATE(DATE_FORMAT = $
['%I:%S', '%H', '%D %M, %Y'])

Figure 2-1: Displaying Date/Time data with PLOT
What’s New in IDL 5.4 Displaying Date/Time Data on an Axis in Direct Graphics

142 Chapter 2: Date/Time Plotting in IDL
where %H represents hours, %D represents days, %M represents months, and %Y
represents years. Notice DATE_FORMAT is specified with a three element vector.
Date/time data can be displayed on an axis with three levels. The format of these
levels are specified through this vector.

In this example, the first level (closest to the axis) will contain minute and second
values separated by a colon (%I:%S). The second level (just below the first level) will
contain the hour values (%H). The third level (the final level farthest from the axis)
will contain the day and month values separated by a space and year value separated
from the day and month values by a comma (%D %M, %Y). For more information,
see LABEL_DATE in the IDL Reference Guide.

Besides the above change to the LABEL_DATE routine, you must also change the
settings of the keywords to the PLOT routine to specify a multiple level axis:

PLOT, date_time, displacement, /XSTYLE, $
; displaying titles.
TITLE = 'Measured Signal', $
XTITLE = 'Time (seconds)', $
YTITLE = 'Displacement (inches)', $
; applying date/time formats to X-axis labels.
POSITION = [0.2, 0.25, 0.9, 0.9], $
XTICKFORMAT = ['LABEL_DATE', 'LABEL_DATE', 'LABEL_DATE'], $
XTICKUNITS = ['Time', 'Hour', 'Day'], $
XTICKINTERVAL = 5

The POSITION keyword is set to allow the resulting display to contain all three
levels and the title of the date/time axis. The XTICKFORMAT is now set to a string
array containing an element for each level of the axis. The XTICKUNITS keyword is
set to note the unit of each level. These keyword settings produce the following
results:
Displaying Date/Time Data on an Axis in Direct Graphics What’s New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 143
Notice the three levels of the x-axis. These levels are arranged as specified by the
previous call to the LABEL_DATE routine.

Displaying Date/Time Data on a Contour Display

Another possible example may be the surface temperature (in degrees Celsius) of
each degree of a single circle on a sphere recorded at every second for 37 seconds
after the initial recording of 59 minutes and 30 seconds after 2 o'clock pm (14
hundred hours) on the 30th day of March in the year 2000:

number_samples = 37
date_time = TIMEGEN(number_samples, UNITS = 'Seconds', $

START = JULDAY(3, 30, 2000, 14, 59, 30))
angle = 10.*FINDGEN(number_samples)
temperature = BYTSCL(SIN(10.*!DTOR* $

FINDGEN(number_samples)) # COS(!DTOR*angle))

Figure 2-2: Displaying Three Levels of Date/Time data with PLOT
What’s New in IDL 5.4 Displaying Date/Time Data on an Axis in Direct Graphics

144 Chapter 2: Date/Time Plotting in IDL
Since the final contour display will be filled, we should define a color table:

DEVICE, DECOMPOSED = 0
LOADCT, 5

The call to the DEVICE command with the DECOMPOSED keyword set to zero
allows color tables to be used on TrueColor displays, which may be the default
setting on some systems. The call to the LOADCT routine loads the Standard
Gamma-II (number 5) color table, which is a part of IDL’s libraries.

As with the one-dimensional case, the format of the date/time values is specified
through the LABEL_DATE routine as follows

date_label = LABEL_DATE(DATE_FORMAT = $
['%I:%S', '%H', '%D %M, %Y'])

where %I represents minutes, %S represents seconds, %H represents hours, %D
represents days, %M represents months, and %Y represents years.

The first level (closest to the axis) will contain minute and second values separated
by a colon (%I:%S). The second level (just below the first level) will contain the hour
values(%H). The third level (the final level farthest from the axis) will contain the
day and month values separated by a space and year value separated from the day and
month values by a comma (%D %M, %Y).

The resulting format is specified by using the CONTOUR routine with the
XTICKFORMAT keyword:

CONTOUR, temperature, angle, date_time, $
; specifying contour levels and fill colors.
LEVELS = BYTSCL(INDGEN(8)), /XSTYLE, /YSTYLE, $
C_COLORS = BYTSCL(INDGEN(8)), /FILL, $
; displaying titles.
TITLE = 'Measured Temperature (degrees Celsius)', $
XTITLE = 'Angle (degrees)', $
YTITLE = 'Time (seconds)', $
; applying date/time formats to X-axis labels.
POSITION = [0.2, 0.25, 0.9, 0.9], $
YTICKFORMAT = ['LABEL_DATE', 'LABEL_DATE', 'LABEL_DATE'], $
YTICKUNITS = ['Time', 'Hour', 'Day'], $
YTICKINTERVAL = 5, $
YTICKLAYOUT = 2

; Applying contour lines over the original contour display.
CONTOUR, temperature, angle, date_time, /OVERPLOT, $

LEVELS = BYTSCL(INDGEN(8))

As in the plot example, the POSITION keyword is set to allow the resulting display
to contain all three levels and the title of the date/time axis. The YTICKUNITS
Displaying Date/Time Data on an Axis in Direct Graphics What’s New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 145
keyword is set to note the unit of each level. And the YTICKINTERVAL keyword is
set to place the major tick marks at every five second interval.

This example also contains the YTICKLAYOUT keyword. By default, this keyword
is set to 0, which provides the date/time layout shown in the plot example. In this
example, YTICKLAYOUT is set to 2, which rotates and boxes the tick labels to
provide the following results:

Using System Variables to Display Date/Time Data

The settings we used to display our date/time data could have been specified through
system variables instead of keywords. The following table shows the relationship
between these keywords and their system variables:

Figure 2-3: Displaying Date/Time Data with CONTOUR

Keywords System Variables

[XYZ]TICKUNITS ![XYZ].TICKUNITS

Table 2-2: Relationship Between Keywords and System Variables
What’s New in IDL 5.4 Displaying Date/Time Data on an Axis in Direct Graphics

146 Chapter 2: Date/Time Plotting in IDL
Usually, keywords are used more frequently than system variables, but system
variables are better when trying to establish a consistent display style. For example,
we could have established a date/time axis style with these system variables before
producing our previous displays:

; Establishing an axis style.
!X.TICKFORMAT = ['LABEL_DATE', 'LABEL_DATE', 'LABEL_DATE']
!X.TICKUNITS = ['Time', 'Hour', 'Day']
!X.TICKINTERVAL = 5
!X.TICKLAYOUT = 2
; Displaying data.
PLOT, date_time, displacement, /XSTYLE, $

TITLE = 'Measured Signal', $
XTITLE = 'Time (seconds)', $
YTITLE = 'Displacement (inches)', $
POSITION = [0.2, 0.7, 0.9, 0.9]

CONTOUR, temperature, date_time, angle, /FILL, $
LEVELS = BYTSCL(INDGEN(8)), /XSTYLE, /YSTYLE, $
C_COLORS = BYTSCL(INDGEN(8)), /NOERASE, $
TITLE = 'Measured Temperature (degrees Celsius)', $
XTITLE = 'Angle (degrees)', $
YTITLE = 'Time (seconds)', $
POSITION = [0.2, 0.25, 0.9, 0.45]

CONTOUR, temperature, date_time, angle, /OVERPLOT, $
LEVELS = BYTSCL(INDGEN(8))

!X.TICKLAYOUT = 0
!X.TICKINTERVAL = 0
!X.TICKUNITS = ''
!X.TICKFORMAT = ''

[XYZ]TICKINTERVAL ![XYZ].TICKINTERVAL

[XYZ]TICKLAYOUT ![XYZ].TICKLAYOUT

Keywords System Variables

Table 2-2: Relationship Between Keywords and System Variables
Displaying Date/Time Data on an Axis in Direct Graphics What’s New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 147
Notice these system variables are set to their default values after the two displays are
shown. When using system variables, instead of keywords, remember to reset them
back to their default values. The above example produces the following results:

Figure 2-4: Date/Time Axis Style Established With System Variables
What’s New in IDL 5.4 Displaying Date/Time Data on an Axis in Direct Graphics

148 Chapter 2: Date/Time Plotting in IDL
Displaying Date/Time Data on an Axis in
Object Graphics

You can display date/time data on plots, contours, and surfaces through the tick
settings of the date/time axis. Date/time data can be displayed on any axis (x, y or z).
The date/time data is stored as Julian dates, but the LABEL_DATE routine and axis
keywords allow you to display this data as calendar dates. The following examples
show how to display one-dimensional and two-dimensional date/time data.

Displaying Date/Time Data on a Plot Display

Date/time data usually comes from measuring data values at specific times. For
example, the displacement (in inches) of an object might be recorded at every second
for 37 seconds after the initial recording of 59 minutes and 30 seconds after 2 o'clock
pm (14 hundred hours) on the 30th day of March in the year 2000 as follows

number_samples = 37
date_time = TIMEGEN(number_samples, UNITS = 'Seconds', $

START = JULDAY(3, 30, 2000, 14, 59, 30))
displacement = SIN(10.*!DTOR*FINDGEN(number_samples))

Normally, this type of data would be imported into IDL from a data file. However,
this section is designed specifically to show how to display date/time data, not how to
import data from a file; therefore, the data for this example is created with the above
IDL commands.

Before displaying this one-dimensional data with the IDLgrPlot object, the format of
the date/time values is specified through the LABEL_DATE routine:

date_label = LABEL_DATE(DATE_FORMAT = ['%I:%S'])

where %I represents minutes and %S represents seconds.

Before applying the results from LABEL_DATE, we must first create (initialize) our
display objects:

oPlotWindow = OBJ_NEW('IDLgrWindow', RETAIM = 2, $
DIMENSIONS = [800, 600])

oPlotView = OBJ_NEW('IDLgrView', /DOUBLE)
oPlotModel = OBJ_NEW('IDLgrModel')
oPlot = OBJ_NEW('IDLgrPlot', date_time, displacement, $

/DOUBLE)

The oPlotModel object will contain the IDLgrPlot and IDLgrAxis objects. The
oPlotView object contains the oPlotModel object with the DOUBLE keyword. The
Displaying Date/Time Data on an Axis in Object Graphics What’s New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 149
DOUBLE keyword is set for the oPlotView and oPlot objects because the date/time
data is made up of double-precision floating-point values.

Although the date/time part of the data will actually be contained and displayed
through the IDLgrAxis object, the oPlot object is created first to provide a display
region for the axes:

oPlot -> GetProperty, XRANGE = xr, YRANGE = yr
xs = NORM_COORD(xr)
xs[0] = xs[0] - 0.5
ys = NORM_COORD(yr)
ys[0] = ys[0] - 0.5
oPlot -> SetProperty, XCOORD_CONV = xs, YCOORD_CONV = ys

The NORM_COORD routine is used to create a normalized (0 to 1) display
coordinate system. This coordinate system will also apply to the IDLgrAxis objects:

; X-axis title.
oTextXAxis = OBJ_NEW('IDLgrText', 'Time (seconds)')
; X-axis (date/time axis).
oPlotXAxis = OBJ_NEW('IDLgrAxis', 0, /EXACT, RANGE = xr, $

XCOORD_CONV = xs, YCOORD_CONV = ys, TITLE = oTextXAxis, $
LOCATION = [xr[0], yr[0]], TICKDIR = 0, $
TICKLEN = (0.02*(yr[1] - yr[0])), $
TICKFORMAT = ['LABEL_DATE'], TICKINTERVAL = 5, $
TICKUNITS = ['Time'])

; Y-axis title.
oTextYAxis = OBJ_NEW('IDLgrText', 'Displacement (inches)')
; Y-axis.
oPlotYAxis = OBJ_NEW('IDLgrAxis', 1, /EXACT, RANGE = yr, $

XCOORD_CONV = xs, YCOORD_CONV = ys, TITLE = oTextYAxis, $
LOCATION = [xr[0], yr[0]], TICKDIR = 0, $
TICKLEN = (0.02*(xr[1] - xr[0])))

; plot title.
oPlotText = OBJ_NEW('IDLgrText', 'Measured Signal', $

LOCATIONS = [(xr[0] + xr[1])/2., $
(yr[1] + (0.02*(yr[0] + yr[1])))], $

XCOORD_CONV = xs, YCOORD_CONV = ys, $
ALIGNMENT = 0.5)

The TICKFORMAT, TICKINTERVAL, and TICKUNITS keywords specify the X-
axis as a date/time axis.

These objects are now added to the oPlotModel object and this model is added to the
oPlotView object:

oPlotModel -> Add, oPlot
oPlotModel -> Add, oPlotXAxis
oPlotModel -> Add, oPlotYAxis
What’s New in IDL 5.4 Displaying Date/Time Data on an Axis in Object Graphics

150 Chapter 2: Date/Time Plotting in IDL
oPlotModel -> Add, oPlotText
oPlotView -> Add, oPlotModel

Now the oPlotView object, which contains all of these objects, can be viewed in the
oPlotWindow object:

oPlotWindow -> Draw, oPlotView

The Draw method to the oPlotWindow object produces the following results:

The above display shows the progression of the date/time variable, but it does not
include all of the date/time data we generated with the TIMEGEN routine. This data
also includes hour, month, day, and year information. IDL can display this
information with additional levels to the date/time axis. You can control the number
of levels to draw and the units used at each level with the TICKUNITS keyword. You
can specify the formatting for these levels by changing the DATE_FORMAT
keyword setting to the LABEL_DATE routine:

date_label = LABEL_DATE(DATE_FORMAT = $
['%I:%S', '%H', '%D %M, %Y'])

where %H represents hours, %D represents days, %M represents months, and %Y
represents years. Notice DATE_FORMAT is specified with a three-element vector.
Date/time data can be displayed on an axis with three levels. The format of these
levels are specified through this vector.

In this example, the first level (closest to the axis) will contain minute and second
values separated by a colon (%I:%S). The second level (just below the first level) will

Figure 2-5: Displaying Date/Time data with IDLgrPlot
Displaying Date/Time Data on an Axis in Object Graphics What’s New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 151
contain the hour values (%H). The third level (the final level farthest from the axis)
will contain the day and month values separated by a space and year value separated
from the day and month values by a comma (%D %M, %Y). For more information,
see LABEL_DATE in the IDL Reference Guide.

Besides the above change to the LABEL_DATE routine, we must also change the
settings of the IDLgrAxis properties to specify a multiple level axis:

oPlotXAxis -> SetProperty, $
TICKFORMAT = ['LABEL_DATE', 'LABEL_DATE', 'LABEL_DATE'], $
TICKUNITS = ['Time', 'Hour', 'Day']

The TICKFORMAT is now set to a string array containing an element for each level
of the axis. The TICKUNITS keyword is set to note the unit of each level. These
property settings produce the following results:

Notice the three levels of the X-axis. These levels are arranged as specified by the
previous call to the LABEL_DATE routine.

To maintain IDL's memory, the object references for oPlotView, oTextXAxis, and
oTextYAxis should be destroyed. Therefore, after the display is drawn, the
OBJ_DESTROY routine should be called:

OBJ_DESTROY, [oPlotView, oTextXAxis, oTextYAxis]

Figure 2-6: Displaying Three Levels of Date/Time data with IDLgrPlot
What’s New in IDL 5.4 Displaying Date/Time Data on an Axis in Object Graphics

152 Chapter 2: Date/Time Plotting in IDL
The display will remain until closed, but the object references are now freed from
IDL's memory.

Displaying Date/Time Data on a Contour Display

Another possible example may be the surface temperature (in degrees Celsius) of
each degree of a single circle on a sphere recorded at every second for 37 seconds
after the initial recording of 59 minutes and 30 seconds after 2 o'clock pm (14
hundred hours) on the 30th day of March in the year 2000

number_samples = 37
date_time = TIMEGEN(number_samples, UNITS = 'Seconds', $

START = JULDAY(3, 30, 2000, 14, 59, 30))
angle = 10.*FINDGEN(number_samples)
temperature = BYTSCL(SIN(10.*!DTOR* $

FINDGEN(number_samples)) # COS(!DTOR*angle))

As with the one-dimensional case, the format of the date/time values is specified
through the LABEL_DATE routine as follows

date_label = LABEL_DATE(DATE_FORMAT = $
['%I:%S', '%H', '%D %M, %Y'])

where %I represents minutes, %S represents seconds, %H represents hours, %D
represents days, %M represents months, and %Y represents years.

The first level (closest to the axis) will contain minute and second values separated
by a colon (%I:%S). The second level (just below the first level) will contain the hour
values(%H). The third level (the final level farthest from the axis) will contain the
day and month values separated by a space and year value separated from the day and
month values by a comma (%D %M, %Y).

Since the final contour display will be filled, we should define a color palette:

oContourPalette = OBJ_NEW('IDLgrPalette')
oContourPalette -> LoadCT, 5

As in the one-dimensional example, the display must be initialized:
Displaying Date/Time Data on an Axis in Object Graphics What’s New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 153
oContourWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = [800, 600])

oContourView = OBJ_NEW('IDLgrView', /DOUBLE)
oContourModel = OBJ_NEW('IDLgrModel')
oContour = OBJ_NEW('IDLgrContour', temperature, $

GEOMX = angle, GEOMY = date_time, GEOMZ = 0., $
/PLANAR, /FILL, PALETTE = oContourPalette, $
/DOUBLE_GEOM, C_VALUE = BYTSCL(INDGEN(8)), $
C_COLOR = BYTSCL(INDGEN(8)))

; Applying contour lines over the original contour display.
oContourLines = OBJ_NEW('IDLgrContour', temperature, $

GEOMX = angle, GEOMY = date_time, GEOMZ = 0.001, $
/PLANAR, /DOUBLE_GEOM, C_VALUE = BYTSCL(INDGEN(8)))

The oContourModel object will contain the IDLgrContour and IDLgrAxis objects.
The oContourView object contains the oContourModel with the DOUBLE keyword.
The DOUBLE and DOUBLE_GEOM keywords are set for the oContourView and
oContour objects because date/time data is made up of double-precision floating-
point values.

Although the date/time part of the data will actually be contained and displayed
through the IDLgrAxis object, the oContour object is created first to provide a
display region for the axes:

oContour -> GetProperty, XRANGE = xr, YRANGE = yr, ZRange = zr
xs = NORM_COORD(xr)
xs[0] = xs[0] - 0.5
ys = NORM_COORD(yr)
ys[0] = ys[0] - 0.5
oContour -> SetProperty, XCOORD_CONV = xs, YCOORD_CONV = ys
oContourLines -> SetProperty, XCOORD_CONV = xs, YCOORD_CONV = ys

The oContourLines object is created to display contour lines over the filled contours.
Note these lines have a GEOMZ difference of 0.001 from the filled contours. This
difference is provided to display the lines over the filled contours and not in the same
view plane. The NORM_COORD routine is used to create a normalized (0 to 1)
display coordinate system. This coordinate system will also apply to the IDLgrAxis
objects:

; X-axis title.
oTextXAxis = OBJ_NEW('IDLgrText', 'Angle (degrees)')
; X-axis.
oContourXAxis = OBJ_NEW('IDLgrAxis', 0, /EXACT, RANGE = xr, $

XCOORD_CONV = xs, YCOORD_CONV = ys, TITLE = oTextXAxis, $
LOCATION = [xr[0], yr[0], zr[0] + 0.001], TICKDIR = 0, $
TICKLEN = (0.02*(yr[1] - yr[0])))

; Y-axis title.
oTextYAxis = OBJ_NEW('IDLgrText', 'Time (seconds)')
What’s New in IDL 5.4 Displaying Date/Time Data on an Axis in Object Graphics

154 Chapter 2: Date/Time Plotting in IDL
; Y-axis (date/time axis).
oContourYAxis = OBJ_NEW('IDLgrAxis', 1, /EXACT, RANGE = yr, $

XCOORD_CONV = xs, YCOORD_CONV = ys, TITLE = oTextYAxis, $
LOCATION = [xr[0], yr[0], zr[0] + 0.001], TICKDIR = 0, $
TICKLEN = (0.02*(xr[1] - xr[0])), $
TICKFORMAT = ['LABEL_DATE', 'LABEL_DATE', 'LABEL_DATE'], $
TICKUNITS = ['Time', 'Hour', 'Day'], $
TICKLAYOUT = 2)

oContourText = OBJ_NEW('IDLgrText', $
'Measured Temperature (degrees Celsius)', $
LOCATIONS = [(xr[0] + xr[1])/2., $

(yr[1] + (0.02*(yr[0] + yr[1])))], $
XCOORD_CONV = xs, YCOORD_CONV = ys, $
ALIGNMENT = 0.5)

The TICKFORMAT, TICKINTERVAL, and TICKUNITS keywords specify the Y-
axis as a date/time axis, which contains three levels related to the formats presented
in the call to the LABEL_DATE routine. This example also contains the
TICKLAYOUT keyword. By default, this keyword is set to 0, which provides the
date/time layout shown in the plot example. In this example, TICKLAYOUT is set to
2, which rotates and boxes the tick labels.

These objects are now added to the oContourModel object and this model is added to
the oContourView object:

oContourModel -> Add, oContour
oContourModel -> Add, oContourLines
oContourModel -> Add, oContourXAxis
oContourModel -> Add, oContourYAxis
oContourModel -> Add, oContourText
oContourView -> Add, oContourModel

Now the oContourView object, which contains all of these objects, can be viewed in
the oContourWindow object:

oContourWindow -> Draw, oContourView

The Draw method to oContourWindow produces the following results:
Displaying Date/Time Data on an Axis in Object Graphics What’s New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 155
Notice the three levels of the y-axis. These levels are arranged as specified by the
previous call to the LABEL_DATE routine.

To maintain IDL’s memory, the object references for oContourView,
oContourPalette, oTextXAxis, and oTextYAxis should be destroyed. Therefore, after
the display is drawn, the OBJ_DESTROY routine should be called:

OBJ_DESTROY, [oContourView, oContourPalette, $
oTextXAxis, oTextYAxis]

The display will remain until closed, but the object references are now freed from
IDL’s memory.

Figure 2-7: Displaying Date/Time data with IDLgrContour
What’s New in IDL 5.4 Displaying Date/Time Data on an Axis in Object Graphics

156 Chapter 2: Date/Time Plotting in IDL
Displaying Date/Time Data on an Axis in Object Graphics What’s New in IDL 5.4

Chapter 3:

New IDL Routines
What’s New in IDL 5.4 157

This chapter describes IDL Routines introduced in IDL version 5.4.

• ARRAY_EQUAL • LAGUERRE • WV_CWT

• BESELK • LEGENDRE • WV_DENOISE

• BREAK • MAKE_DLL • WV_FN_GAUSSIAN

• COLORMAP_APPLICABLE • MAP_2POINTS • WV_FN_MORLET

• CONTINUE • MATRIX_MULTIPLY • WV_FN_PAUL

• FILE_CHMOD • MEMORY • XDXF

• FILE_DELETE • RADON • XPCOLOR

• FILE_EXPAND_PATH • SAVGOL • XPLOT3D

• FILE_MKDIR • SOCKET • XROI

• FILE_TEST • SPHER_HARM • XVOLUME

• FILE_WHICH • SWITCH

• HOUGH • TIMEGEN

158 Chapter 3: New IDL Routines
ARRAY_EQUAL What’s New in IDL 5.4

ARRAY_EQUAL

The ARRAY_EQUAL function is a fast way to compare data for equality in
situations where the index of the elements that differ are not of interest. This
operation is much faster than using TOTAL(A NE B), because it stops the
comparison as soon as the first inequality is found, an intermediate array is not
created, and only one pass is made through the data. For best speed, ensure that the
operands are of the same data type.

Arrays may be compared to scalars, in which case each element is compared to the
scalar. For two arrays to be equal, they must have the same number of elements. If the
types of the operands differ, the type of the least precise is converted to that of the
most precise, unless the NO_TYPECONV keyword is specified to prevent it. This
function works on all numeric types and strings.

Syntax

Result = ARRAY_EQUAL(Op1 , Op2 [, /NO_TYPECONV])

Return Value

Returns 1 (true) if, and only if, all elements of Op1 are equal to Op2; returns 0 (false)
at the first instance of inequality.

Arguments

Op1, Op2

The variables to be compared.

Keywords

NO_TYPECONV

By default, ARRAY_EQUAL converts operands of different types to a common type
before performing the equality comparison. Set NO_TYPECONV to disallow this
implicit type conversion. If NO_TYPECONV is specified, operands of different
types are never considered to be equal, even if their numeric values are the same.

Example

; Return True (1) if all elements of a are equal to a 0 byte:
IF ARRAY_EQUAL(a, 0b) THEN ...
; Return True (1) if all elements of a are equal all elements of b:
IF ARRAY_EQUAL(a, b) THEN ...

Chapter 3: New IDL Routines 159
BESELK

The BESELK function returns the K Bessel function of order N for the argument X.
The BESELK function is adapted from “SPECFUN - A Portable FORTRAN
Package of Special Functions and Test Drivers”, W. J. Cody, Algorithm 715, ACM
Transactions on Mathematical Software, Vol 19, No. 1, March 1993.

Syntax

Result = BESELK(X, N)

Return Value

If X is double-precision, the result is double precision, otherwise the argument is
converted to floating-point and the result is floating-point.

Arguments

X

The expression for which the K Bessel function is required. The result will have the
same dimensions as X.

N

The order of the K Bessel function to calculate. N should be greater than or equal to 0
and less than 20, and can be either an integer or a real number.

Keywords

None

Example

The following example plots the I and K Bessel functions for orders 0, 1 and 2:

X = FINDGEN(40)/10

;Plot I and K Bessel Functions:
PLOT, X, BESELI(X, 0), MAX_VALUE=4, $

TITLE = 'I and K Bessel Functions'
OPLOT, X, BESELI(X, 1)
OPLOT, X, BESELI(X, 2)
OPLOT, X, BESELK(X, 0), LINESTYLE=2
OPLOT, X, BESELK(X, 1), LINESTYLE=2
What’s New in IDL 5.4 BESELK

160 Chapter 3: New IDL Routines
OPLOT, X, BESELK(X, 2), LINESTYLE=2

;Annotate plot:
xcoords = [.18, .45, .95, 1.4, 1.8, 2.4]
ycoords = [2.1, 2.1, 2.1, 1.8, 1.6, 1.4]
labels = ['!8K!X!D0','!8K!X!D1','!8K!X!D2','!8I!X!D0',

'!8I!X!D1','!8I!X!D2']
XYOUTS, xcoords, ycoords, labels, /DATA

This results in the following plot:

See Also

BESELI, BESELJ, BESELY

Figure 3-1: I and K Bessel Functions.
BESELK What’s New in IDL 5.4

Chapter 3: New IDL Routines 161
BREAK

The BREAK statement provides a convenient way to immediately exit from a loop
(FOR, WHILE, REPEAT), CASE, or SWITCH statement without resorting to
GOTO statements.

Note
BREAK is an IDL statement. For information on using statements, see Chapter 11,
“Program Control” in Building IDL Applications.

Syntax

BREAK

Example

This example exits the enclosing WHILE loop when the value of i hits 5.

I = 0
WHILE (1) DO BEGIN

i = i + 1
IF (i eq 5) THEN BREAK

ENDWHILE
What’s New in IDL 5.4 BREAK

162 Chapter 3: New IDL Routines
COLORMAP_APPLICABLE

The COLORMAP_APPLICABLE function determines whether the current visual
class supports the use of a colormap, and if so, whether colormap changes affect pre-
displayed Direct Graphics or if the graphics must be redrawn to pick up colormap
changes.

This routine is written in the IDL language. Its source code can be found in the file
colormap_applicable.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = COLORMAP_APPLICABLE(redrawRequired)

Return Value

The function returns a long value of 1 if the current visual class allows modification
of the color table, and 0 otherwise.

Arguments

redrawRequired

A named variable to retrieve a value indicating whether the visual class supports
automatic updating of graphics. The value is 0 if the graphics are updated
automatically, or 1 if the graphics must be redrawn to pick up changes to the
colormap.

Keywords

None.

Example

To determine whether to redisplay an image after a colormap change:

result = COLORMAP_APPLICABLE(redrawRequired)
IF ((result GT 0) AND (redrawRequired GT 0)) THEN BEGIN

my_redraw
ENDIF
COLORMAP_APPLICABLE What’s New in IDL 5.4

Chapter 3: New IDL Routines 163
CONTINUE

The CONTINUE statement provides a convenient way to immediately start the next
iteration of the enclosing FOR, WHILE, or REPEAT loop.

Note
Do not confuse the CONTINUE statement described here with the .CONTINUE
executive command. The two constructs are not related, and serve completely
different purposes.

Note
CONTINUE is not allowed within CASE or SWITCH statements. This is in
contrast with the C language, which does allow this.

For more information on using CONTINUE and other IDL program control
statements, see Chapter 11, “Program Control” in Building IDL Applications.

Syntax

CONTINUE

Example

This example presents one way (not necessarily the best) to print the even numbers
between 1 and 10.

FOR I = 1,10 DO BEGIN
; If odd, start next iteration:
IF (I AND 1) THEN CONTINUE
PRINT, I

ENDFOR
What’s New in IDL 5.4 CONTINUE

164 Chapter 3: New IDL Routines
FILE_CHMOD

The FILE_CHMOD procedure allows you to change the current access permissions
(sometimes known as modes on UNIX platforms) associated with a file or directory.
File modes are specified using the standard Posix convention of three protection
classes (user, group, other), each containing three attributes (read, write, execute).
These permissions can be specified as an octal bitmask in which desired permissions
have their associated bit set and unwanted ones have their bits cleared. This is the
same format familiar to users of the UNIX chmod(1) command).

Keywords are available to specify permissions without the requirement to specify a
bitmask, providing a simpler way to handle many situations. All of the keywords
share a similar behavior: Setting them to a non-zero value adds the specified
permission to the Mode argument. Setting the keyword to 0 removes that permission.

To find the current protection settings for a given file, you can use the GET_MODE
keyword to the FILE_TEST function.

Syntax

FILE_CHMOD, File [, Mode] [, /A_EXECUTE |, /A_READ |, /A_WRITE]
[, /G_EXECTUE | /G_READ | , /G_WRITE]
[, /O_EXECTUE | /O_READ | , /O_WRITE]
[, /U_EXECTUE | /U_READ | , /U_WRITE]

UNIX-Only Keywords: [, /SETGID] [, /SETUID] [, /STICKY_BIT]

Arguments

File

A scalar or array of file or directory names for which protection modes will be
changed.

Mode

An optional bit mask specifying the absolute protection settings to be applied to the
files. If Mode is not supplied, FILE_CHMOD looks up the current modes for the file
and uses it instead. Any additional modes specified via keywords are applied relative
to the value in Mode. Setting a keyword adds the necessary mode bits to Mode, and
clearing it by explicitly setting a keyword to 0 removes those bits from Mode.

The values of the bits in these masks correspond to those used by the UNIX
chmod(2) system call and chmod(1) user command, and are given in the following
FILE_CHMOD What’s New in IDL 5.4

Chapter 3: New IDL Routines 165
table. Since these bits are usually manipulated in groups of three, octal notation is
commonly used when referring to them. When constructing a mode, the following
platform specific considerations should be kept in mind:

• The setuid, setgid, and sticky bits are specific to the UNIX operating system,
and have no meaning elsewhere. FILE_CHMOD ignores them on non-UNIX
systems. The UNIX kernel may quietly refuse to set the sticky bit if you are not
the root user. Consult the chmod(2) man page for details.

• The VMS operating system has four permission classes, unlike the 3 supported
by UNIX. Furthermore, each class has an additional bit (DELETE) not
supported by UNIX. IDL uses the C runtime library chmod() function
supplied by the operating system to translate between the UNIX convention
used by IDL and the native VMS permission masks. It maps the VMS
SYSTEM and OWNER classes to the user class, GROUP to group, and
WORLD to other. The DELETE bit is combined with the WRITE bit.

• The Microsoft Windows and Macintosh operating systems do not have 3
permission classes like UNIX does. Therefore, setting for all three classes are
combined into a single request.

• The Microsoft Windows and Macintosh operating systems always allow read
access to any files visible to a program. FILE_CHMOD therefore ignores any
requests to remove read access.

• The Microsoft Windows and Macintosh operating systems do not maintain an
execute bit for their files. Windows uses the file suffix to decide if a file is
executable, and Macintosh IDL only considers files of type APPL to be
executable. Therefore, FILE_CHMOD cannot change the execution status of a
file on these platforms. Such requests are quietly ignored.

Bit Octal Mask Meaning

12 '4000'o Setuid: Set user ID on execution.

11 '2000'o Setgid: Set group ID on execution.

10 '1000'o Turn on sticky bit. See the UNIX documentation
on chmod(2) for details.

9 '0400'o Allow read by owner.

8 '0200'o Allow write by owner.

Table 3-1: UNIX chmod(2) mode bits
What’s New in IDL 5.4 FILE_CHMOD

166 Chapter 3: New IDL Routines
Keywords

A_EXECUTE

Execute access for all three (user, group, other) categories.

A_READ

Read access for all three (user, group, other) categories.

A_WRITE

Write access for all three (user, group, other) categories.

G_EXECUTE

Execute access for the group category.

G_READ

Read access for the group category.

G_WRITE

Write access for the group category.

O_EXECUTE

Execute access for the other category.

O_READ

Read access for the other category.

7 '0100'o Allow execute by owner.

6 '0040'o Allow read by group.

5 '0020'o Allow write by group.

4 '0010'o Allow execute by group.

3 '0004'o Allow read by others.

2 '0002'o Allow write by others.

1 '0001'o Allow execute by others.

Bit Octal Mask Meaning

Table 3-1: UNIX chmod(2) mode bits
FILE_CHMOD What’s New in IDL 5.4

Chapter 3: New IDL Routines 167
O_WRITE

Write access for the other category.

U_EXECUTE

Execute access for the user category.

U_READ

Read access for the user category.

U_WRITE

Write access for the user category.

UNIX-Only Keywords

SETGID

The Set Group ID bit.

SETUID

The Set User ID bit.

STICKY_BIT

Sets the sticky bit.

Example

In the first example, we make the file moose.dat read only to everyone except the
owner of the file, but not change any other settings:

FILE_CHMOD, 'moose.dat', /U_WRITE, G_WRITE=0, O_WRITE=0

In the next example, we make the file readable and writable to the owner and group,
but read-only to anyone else, and remove any other modes:

FILE_CHMOD, 'moose.dat', '664'o
What’s New in IDL 5.4 FILE_CHMOD

168 Chapter 3: New IDL Routines
FILE_DELETE

The FILE_DELETE procedure deletes a file or empty directory, if the process has the
necessary permissions to remove the file as defined by the current operating system.
FILE_CHMOD can be used to change file protection settings.

Syntax

FILE_DELETE, File1 [,... FileN] [, /QUIET]

Arguments

FileN

A scalar or array of file or directory names to be deleted, one name per string
element. Directories must be specified in the native syntax for the current operating
system. See “Operating System Syntax” below for additional details.

Keywords

QUIET

FILE_DELETE will normally issue an error if it is unable to remove a requested file
or directory. If QUIET is set, no error is issued and FILE_DELETE simply moves on
to the next requested item.

Operating System Syntax

The syntax used to specify directories for removal depends on the operating system
in use, and is in general the same as you would use when issuing commands to the
operating system command interpreter.

Microsoft Windows users must be careful to not specify a trailing backslash at the
end of a specification. For example:

FILE_DELETE, 'c:\mydir\myfile'

and not:

FILE_DELETE, 'c:\mydir\myfile\'

For VMS users, the syntax for creating a subdirectory (as with the
CREATE/DIRECTORY DCL command) is not symmetric with that used to delete it
(using the DELETE,/DIRECTORY). FILE_DELETE follows the same rules. For
FILE_DELETE What’s New in IDL 5.4

Chapter 3: New IDL Routines 169
instance, to create a subdirectory of the current working directory named
bullwinkle and then remove it:

FILE_MKDIR,'[.bullwinkle]'
FILE_DELETE,'bullwinkle.dir'

Example

In this example, we remove an empty directory named moose. On the Macintosh,
UNIX, or Windows operating systems:

FILE_DELETE, 'moose'

To do the same thing under VMS:

FILE_DELETE, 'moose.dir'
What’s New in IDL 5.4 FILE_DELETE

170 Chapter 3: New IDL Routines
FILE_EXPAND_PATH

The FILE_EXPAND_PATH function expands a given file or partial directory name
to its fully qualified name regardless of the current working directory.

Note
This routine should be used only to make sure that file paths are fully qualified, but
not to expand wildcard characters (e.g. *). The behavior of FILE_EXPAND_PATH
when it encounters a wildcard is platform dependent, and should not be depended
on. These differences are due to the underlying operating system, and are beyond
IDL’s control. To expand wildcards and obtain fully qualified paths, combine the
FINDFILE function with FILE_EXPAND_PATH:

A = FILE_EXPAND_PATH(FINDFILE('*.pro'))

Syntax

Result = FILE_EXPAND_PATH (Path)

Return Value

FILE_EXPAND_PATH returns a fully qualified file path that completely specifies
the location of Path without the need to consider the user’s current working directory.

Arguments

Path

A scalar or array of file or directory names to be fully qualified.

Keywords

None.

Example

In this example, we change directories to the IDL lib directory and expand the file
path for the DIST function:

cd, FILEPATH('', SUBDIRECTORY=['lib'])
print, FILE_EXPAND_PATH('dist.pro')
FILE_EXPAND_PATH What’s New in IDL 5.4

Chapter 3: New IDL Routines 171
This results in the following if run on a UNIX system:

/usr/local/rsi/idl_5.4/lib/dist.pro

See Also

FINDFILE
What’s New in IDL 5.4 FILE_EXPAND_PATH

172 Chapter 3: New IDL Routines
FILE_MKDIR

The FILE_MKDIR procedure creates a new directory, or directories, with the default
access permissions for the current process.

Note
Use the FILE_CHMOD procedure to alter access permissions.

If a specified directory has non-existent parent directories, FILE_MKDIR
automatically creates all the intermediate directories as well.

Syntax

FILE_MKDIR, File1 [,... FileN]

Arguments

FileN

A scalar or array of directory names to be created, one name per string element.
Directories must be specified in the native syntax for the current operating system.

Keywords

None.

Example

To create a subdirectory named moose in the current working directory on the
Macintosh, UNIX, or Windows operating systems:

FILE_MKDIR, 'moose'

To do the same thing under VMS:

FILE_MKDIR, '[.moose]'
FILE_MKDIR What’s New in IDL 5.4

Chapter 3: New IDL Routines 173
FILE_TEST

The FILE_TEST function checks files for existence and other attributes without
having to first open the file.

Syntax

Result = FILE_TEST(File [, /DIRECTORY | , /EXECUTABLE | , /READ |
, /REGULAR | , /WRITE | , /ZERO_LENGTH] [, GET_MODE=variable])

UNIX-Only Keywords: [, /BLOCK_SPECIAL | , /CHARACTER_SPECIAL |
, /DANGLING_SYMLINK | , /NAMED_PIPE | , /SETGID | , /SETUID | , /SOCKET
| , /STICKY_BIT | , /SYMLINK]

UNIX and VMS-Only Keywords: [, /GROUP | , /USER]

Return Value

FILE_TEST returns 1 (true), if the specified file exists and all of the attributes
specified by the keywords are also true. If no keywords are present, a simple test for
existence is performed. If the file does not exist or one of the specified attributes is
not true, then FILE_TEST returns 0 (false).

Arguments

File

A scalar or array of file names to be tested. The result is of type integer with the same
number of elements as File.

Keywords

DIRECTORY

Set this keyword to return 1 (true) if File exists and is a directory.

EXECUTABLE

Set this keyword to return 1 (true) if File exists and is executable. The source of this
information differs between operating systems:

• UNIX and VMS: IDL checks the per-file information (the execute bit)
maintained by the operating system.
What’s New in IDL 5.4 FILE_TEST

174 Chapter 3: New IDL Routines
• Microsoft Windows: The determination is made on the basis of the file name
extension (e.g. .exe).

• Macintosh: Files of type ‘APPL’ (proper applications) are reported as
executable. This corresponds to “Double Clickable” applications.

GET_MODE

Set this keyword to a named variable to receive the UNIX style mode (permission)
mask for the specified file. The bits in these masks correspond to those used by the
UNIX chmod(2) system call, and are explained in detail in the description of the
Mode argument to the FILE_CHMOD procedure. When interpreting the value
returned by this keyword, the following platform specific details should be kept in
mind:

• The setuid, setgid, and sticky bits are specific to the UNIX operating system,
and will never be returned on any other platform. Consult the chmod(2) man
page and/or other UNIX programming documentation for more details.

• The VMS operating system has four permission classes, unlike the three
supported by UNIX. Furthermore, each class has an additional bit (DELETE)
not supported by UNIX. IDL uses the C runtime library stat() function
supplied by the operating system to translate between the UNIX convention
used by IDL and the native VMS permission masks. It maps the VMS
OWNER to the user class, GROUP to group, and WORLD to other. The
DELETE bit is combined with the WRITE bit.

• The Microsoft Windows and Macintosh operating systems do not have 3
permission classes like UNIX does. Therefore, IDL returns the same settings
for all three classes.

• The Microsoft Windows and Macintosh operating systems to not maintain an
execute bit for their files. Windows uses the file suffix to decide if a file is
executable, and Macintosh IDL only considers files of type ‘APPL’ to be
executable.

READ

Set this keyword to return 1 (true) if File exists and is readable by the user.

REGULAR

Set this keyword to return 1 (true) if File exists and is a regular disk file and not a
directory, pipe, socket, or other special file type.
FILE_TEST What’s New in IDL 5.4

Chapter 3: New IDL Routines 175
WRITE

Set this keyword to return 1 (true) if File exists and is writable by the user.

ZERO_LENGTH

Set this keyword to return 1 (true) if File exists and has zero length.

Note
The length of a directory is highly system dependent and does not necessarily
correspond to the number of files it contains. In particular, it is possible for an
empty directory to report a non-zero length. RSI does not recommend using the
ZERO_LENGTH keyword on directories, as the information returned cannot be
used in a meaningful way.

UNIX-Only Keywords

BLOCK_SPECIAL

Set this keyword to return 1 (true) if File exists and is a block special device.

CHARACTER_SPECIAL

Set this keyword to return 1 (true) if File exists and is a character special device.

DANGLING_SYMLINK

Set this keyword to return 1 (true) if File is a symbolic link that points at a non-
existent file.

NAMED_PIPE

Set this keyword to return 1 (true) if File exists and is a named pipe (fifo) device.

SETGID

Set this keyword to return 1 (true) if File exists and has its Set-Group-ID bit set.

SETUID

Set this keyword to return 1 (true) if File exists and has its Set-User-ID bit set.

SOCKET

Set this keyword to return 1 (true) if File exists and is a UNIX domain socket.
What’s New in IDL 5.4 FILE_TEST

176 Chapter 3: New IDL Routines
STICKY_BIT

Set this keyword to return 1 (true) if File exists and has its sticky bit set.

SYMLINK

Set this keyword to return 1 (true) if File exists and is a symbolic link that points at an
existing file.

UNIX and VMS-Only Keywords

GROUP

Set this keyword to return 1 (true) if File exists and belongs to the same effective
group ID (GID) as the IDL process.

USER

Set this keyword to return 1 (true) if File exists and belongs to the same effective user
ID (UID) as the IDL process.

Example

Does my IDL distribution support the IRIX operating system?

result = FILE_TEST(!DIR + '/bin/bin.sgi', /DIRECTORY)
PRINT, 'IRIX IDL Installed: ', result ? 'yes' : 'no'
FILE_TEST What’s New in IDL 5.4

Chapter 3: New IDL Routines 177
FILE_WHICH

The FILE_WHICH function separates a specified file path into its component
directories, and searches each directory in turn for a specific file. This command is
modeled after the UNIX which(1) command.

This routine is written in the IDL language. Its source code can be found in the file
file_which.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = FILE_WHICH([Path,] File [, /INCLUDE_CURRENT_DIR])

Return Value

Returns the path for the first file for the given name found by searching the specified
path. If FILE_WHICH does not find the desired file, a NULL string is returned.

Arguments

Path

A search path to be searched. If Path is not present, the value of the IDL !PATH
system variable is used.

File

The file to look for in the directories given by Path.

Keywords

INCLUDE_CURRENT_DIR

If set, FILE_WHICH looks in the current directory before starting to search Path for
File. When IDL searches for a routine to compile, it looks in the current working
directory before searching !PATH. The INCLUDE_CURRENT_DIR keyword
allows FILE_WHICH to mimic this behavior.

Example

To find the location of this routine:

Result = FILE_WHICH('file_which.pro')
What’s New in IDL 5.4 FILE_WHICH

178 Chapter 3: New IDL Routines
To find the location of the UNIX ls command:

Result = FILE_WHICH(getenv('PATH'), 'ls')
FILE_WHICH What’s New in IDL 5.4

Chapter 3: New IDL Routines 179
HOUGH

The HOUGH function implements the Hough transform, used to detect straight lines
within a two-dimensional image. This function can be used to return either the Hough
transform, which transforms each nonzero point in an image to a sinusoid in the
Hough domain, or the Hough backprojection, where each point in the Hough domain
is transformed to a straight line in the image.

Syntax

Hough Transform:

Result = HOUGH(Array [, /DOUBLE] [, DRHO=scalar] [, DX=scalar]
[, DY=scalar] [, /GRAY] [, NRHO=scalar] [, NTHETA=scalar] [, RHO=variable]
[, RMIN=scalar] [, THETA=variable] [, XMIN=scalar] [, YMIN=scalar])

Hough Backprojection:

Result = HOUGH(Array, /BACKPROJECT, RHO=variable, THETA=variable
[, /DOUBLE] [, DX=scalar] [, DY=scalar] [, NX=scalar] [, NY=scalar]
[, XMIN=scalar] [, YMIN=scalar])

Return Value

The result of this function is a two-dimensional floating-point array, or a complex
array if the input image is complex. If Array is double-precision, or if the DOUBLE
keyword is set, the result is double-precision, otherwise, the result is single-precision.

Hough Transform Theory

The Hough transform is defined for a function A(x, y) as:

H θ ρ,() A
∞–

∞
∫∞–

∞
∫= x y(,) δ ρ x θcos– y θsin–() dx dy
What’s New in IDL 5.4 HOUGH

180 Chapter 3: New IDL Routines
where δ is the Dirac delta-function. With A(x, y), each point (x, y) in the original
image, A, is transformed into a sinusoid ρ = xcosθ – ysinθ, where ρ is the
perpendicular distance from the origin of a line at an angle θ:

Points that lie on the same line in the image will produce sinusoids that all cross at a
single point in the Hough transform. For the inverse transform, or backprojection,
each point in the Hough domain is transformed into a straight line in the image.

Usually, the Hough function is used with binary images, in which case H(θ, ρ) gives
the total number of sinusoids that cross at point (θ, ρ), and hence, the total number of
points making up the line in the original image. By choosing a threshold T for
H(θ, ρ), and using the inverse Hough function, you can filter the original image to
keep only lines that contain at least T points.

How IDL Implements the Hough Transform

Consider an image Amn of dimensions M by N, with array indices m = 0,..., M–1 and
n = 0,..., N–1.

 The discrete formula for the HOUGH function for Amn is:

where the brackets [] indicate rounding to the nearest integer, and

Figure 3-2: Hough Transform

H θ ρ(,) A
n
∑

m
∑= mn δ ρ ρ'[],()

ρ' m∆x xmin+() θcos n∆y ymin+() θsin+=
HOUGH What’s New in IDL 5.4

Chapter 3: New IDL Routines 181
The pixels are assumed to have spacing ∆x and ∆y in the x and y directions. The
delta-function is defined as:

How IDL Implements the Hough Backprojection

The backprojection, Bmn, contains all of the straight lines given by the (θ, ρ) points
given in H(θ, ρ). The discrete formula is

where the slopes and offsets are given by:

Arguments

Array

The two-dimensional array of size M by N which will be transformed. If the keyword
GRAY is not set, then, for the forward transform, Array is treated as a binary image
with all nonzero pixels considered as 1.

Keywords

BACKPROJECT

If set, the backprojection is computed, otherwise, the forward transform is computed.
When BACKPROJECT is set, Result will be an array of dimension NX by NY.

δ ρ ρ'[](,) 1 ρ ρ'[]=

0 otherwise

=

Bmn

H
ρ
∑

θ
∑ θ ρ(,) δ n am b+[](,)

H
ρ
∑

θ
∑ θ ρ(,) δ m a'n b'+[](,)

θsin
2

2
------->

θsin
2

2
-------≤

=

a
∆x
∆y
------ θcos

θsin
------------– b

ρ xmin– θcos ymin– θsin

∆y θsin
--==

a'
1
a
--- b'

ρ xmin– θcos ymin– θsin

∆x θcos
--==
What’s New in IDL 5.4 HOUGH

182 Chapter 3: New IDL Routines
Note
The Hough transform is not one-to-one: each point (x, y) is not mapped to a single
(θ, ρ). Therefore, instead of the original image, the backprojection, or inverse
transform, returns an image containing the set of all lines given by the (θ, ρ) points.

DOUBLE

Set this keyword to force the computation to be done using double-precision
arithmetic.

DRHO

Set this keyword equal to a scalar specifying the spacing ∆ρ between ρ coordinates,
expressed in the same units as Array. The default is 1/SQRT(2) times the diagonal
distance between pixels, [(DX2 + DY2)/2]1/2 . A larger value produces a coarser
resolution by mapping multiple pixels onto a single ρ; this is useful for images that
do not contain perfectly straight lines. A smaller value may produce undersampling
by trying to map fractional pixels onto ρ, and is not recommended. If
BACKPROJECT is specified, this keyword is ignored.

DX

Set this keyword equal to a scalar specifying the spacing between the horizontal (X)
coordinates. The default is 1.0.

DY

Set this keyword equal to a scalar specifying the spacing between the vertical (Y)
coordinates. The default is 1.0.

GRAY

Set this keyword to perform a weighted Hough transform, with the weighting given
by the pixel values. If GRAY is not set, the image is treated as a binary image with all
nonzero pixels considered as 1. If BACKPROJECT is specified, this keyword is
ignored.

NRHO

Set this keyword equal to a scalar specifying the number of ρ coordinates to use. The
default is 2 CEIL([MAX(X2 + Y2)]1/2 / DRHO) + 1. If BACKPROJECT is
specified, this keyword is ignored.
HOUGH What’s New in IDL 5.4

Chapter 3: New IDL Routines 183
NTHETA

Set this keyword equal to a scalar specifying the number of θ coordinates to use over
the interval [0,π]. The default is CEIL(π [MAX(X2 + Y2)]1/2 / DRHO). A larger
value will produce smoother results, and is useful for filtering before backprojection.
A smaller value will result in broken lines in the transform, and is not recommended.
If BACKPROJECT is specified, this keyword is ignored.

NX

If BACKPROJECT is specified, set this keyword equal to a scalar specifying the
number of horizontal coordinates in the output array. The default is
FLOOR(2 MAX(|RHO|)(DX2 + DY2)–1/2 + 1). For the forward transform this
keyword is ignored.

NY

If BACKPROJECT is specified, set this keyword equal to a scalar specifying the
number of vertical coordinates in the output array. The default is
FLOOR(2 MAX(|RHO|)(DX2 + DY2)–1/2 + 1). For the forward transform, this
keyword is ignored.

RHO

For the forward transform, set this keyword to a named variable that, on exit, will
contain the radial (ρ) coordinates. If BACKPROJECT is specified, this keyword must
contain the ρ coordinates of the input Array.

RMIN

Set this keyword equal to a scalar specifying the minimum ρ coordinate to use for the
forward transform. The default is –0.5(NRHO – 1) DRHO. If BACKPROJECT is
specified, this keyword is ignored.

THETA

For the forward transform, set this keyword to a named variable containing a vector
of angular (θ) coordinates to use for the transform. If NTHETA is specified instead,
and THETA is set to a named variable, then on exit THETA will contain the θ
coordinates. If BACKPROJECT is specified, this keyword must contain the θ
coordinates of the input Array.

XMIN

Set this keyword equal to a scalar specifying the X coordinate of the lower-left corner
of the input Array. The default is –(M–1)/2, where Array is an M by N array. If
BACKPROJECT is specified, set this keyword equal to a scalar specifying the X
What’s New in IDL 5.4 HOUGH

184 Chapter 3: New IDL Routines
coordinate of the lower-left corner of the Result. In this case the default is
–DX (NX–1)/2.

YMIN

Set this keyword equal to a scalar specifying the Y coordinate of the lower-left corner
of the input Array. The default is –(N–1)/2, where Array is an M by N array. If
BACKPROJECT is specified, set this keyword equal to a scalar specifying the Y
coordinate of the lower-left corner of the Result. In this case the default is
–DY (NY–1)/2.

Example

This example computes the Hough transform of a random set of pixels:

PRO hough_example

;Create an image with a random set of pixels
seed = 12345 ; remove this line to get different random images
array = RANDOMU(seed,128,128) GT 0.95

;Draw three lines in the image
x = FINDGEN(32)*4
array[x,0.5*x+20] = 1b
array[x,0.5*x+30] = 1b
array[-0.5*x+100,x] = 1b

;Create display window, set graphics properties
WINDOW, XSIZE=330,YSIZE=630, TITLE='Hough Example'
!P.BACKGROUND = 255 ; white
!P.COLOR = 0 ; black
!P.FONT=2
ERASE

XYOUTS, .1, .94, 'Noise and Lines', /NORMAL
;Display the image. 255b changes black values to white:
TVSCL, 255b - array, .1, .72, /NORMAL

;Calculate and display the Hough transform
result = HOUGH(array, RHO=rho, THETA=theta)
XYOUTS, .1, .66, 'Hough Transform', /NORMAL
TVSCL, 255b - result, .1, .36, /NORMAL

;Keep only lines that contain more than 20 points:
result = (result - 20) > 0

;Find the Hough backprojection and display the output
backproject = HOUGH(result, /BACKPROJECT, RHO=rho, THETA=theta)
HOUGH What’s New in IDL 5.4

Chapter 3: New IDL Routines 185
XYOUTS, .1, .30, 'Hough Backprojection', /NORMAL
TVSCL, 255b - backproject, .1, .08, /NORMAL

END

The following figure displays the output of this example. The top image shows three
lines drawn within a random array of pixels that represent noise. The center image
shows the Hough transform, displaying sinusoids for points that lie on the same line
in the original image. The bottom image shows the Hough backprojection, after
setting the threshold to retain only those lines that contain more than 20 points. The
Hough inverse transform, or backprojection, transforms each point in the Hough
domain into a straight line in the image.

See Also

RADON

Figure 3-3: HOUGH example showing random pixels (top), Hough transform
(center) and Hough backprojection (bottom)
What’s New in IDL 5.4 HOUGH

186 Chapter 3: New IDL Routines
References

1. Gonzalez, R.C., and R.E. Woods. Digital Image Processing. Reading, MA:
Addison Wesley, 1992.

2. Jain, Anil K. Fundamentals of Digital Image Processing. Englewood Cliffs,
NJ: Prentice-Hall, 1989.

3. Toft, Peter. The Radon Transform: Theory and Implementation. Denmark:
Technical University; 1996. Ph.D. Thesis.

4. Weeks, Arthur. R. Fundamentals of Electronic Image Processing. New York:
SPIE Optical Engineering Press, 1996.
HOUGH What’s New in IDL 5.4

Chapter 3: New IDL Routines 187
LAGUERRE

The LAGUERRE function returns the value of the associated Laguerre polynomial
. The associated Laguerre polynomials are solutions to the differential

equation:

with orthogonality constraint:

Laguerre polynomials are used in quantum mechanics, for example, where the wave
function for the hydrogen atom is given by the Laguerre differential equation.

This routine is written in the IDL language. Its source code can be found in the file
laguerre.pro in the lib subdirectory of the IDL distribution.

This routine is written in the IDL language. Its source code can be found in the file
laguerre.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LAGUERRE(X, N [, K] [, COEFFICIENTS=variable] [, /DOUBLE])

Return Value

This function returns a scalar or array with the same dimensions as X. If X is double-
precision or if the DOUBLE keyword is set, the result is double-precision complex,
otherwise the result is single-precision complex.

Arguments

X

The value(s) at which is evaluated. X can be either a scalar or an array.

N

A scalar integer, N ≥ 0, specifying the order n of . If N is of type float, it will be
truncated.

Lk
n x()

xy″ k 1 x–+()y ′ ny+ + 0=

e x– xk 1+ L k
m x()Lk

n x() xd
0

∞
∫ n k+()!

n!
-------------------δmn=

Lk
n x()

Lk
n x()
What’s New in IDL 5.4 LAGUERRE

188 Chapter 3: New IDL Routines
K

A scalar, K ≥ 0, specifying the order k of . If K is not specified, the default
K = 0 is used and the Laguerre polynomial, Ln(x), is returned.

Keywords

COEFFICIENTS

Set this keyword to a named variable that will contain the polynomial coefficients in
the expansion C[0] + C[1]x + C[2]x2 +

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

To compute the value of the Laguerre polynomial at the following X values:

;Define the parametric X values:
X = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]

;Compute the Laguerre polynomial of order N=2, K=1:
result = LAGUERRE(X, 2, 1)

;Print the result:
PRINT, result

IDL prints:

3.00000 2.42000 1.88000 1.38000 0.920000 0.500000

This is the exact solution vector to six-decimal accuracy.

See Also

LEGENDRE, SPHER_HARM

Lk
n x()
LAGUERRE What’s New in IDL 5.4

Chapter 3: New IDL Routines 189
LEGENDRE

The LEGENDRE function returns the value of the associated Legendre polynomial
. The associated Legendre functions are solutions to the differential equation:

with orthogonality constraints:

The Legendre polynomials are the solutions to the Legendre equation with m = 0. For
positive m, the associated Legendre functions can be written in terms of the Legendre
polynomials as:

Associated polynomials for negative m are related to positive m by:

LEGENDRE is based on the routine plgndr described in section 6.8 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = LEGENDRE(X, L [, M] [, /DOUBLE])

Return Value

If all arguments are scalar, the function returns a scalar. If all arguments are arrays,
the function matches up the corresponding elements of X, L, and M, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other arguments are arrays, the function uses the scalar value with each element

P
m

l
x()

1 x
2

–()y″ 2xy ′– l l 1+() m
2

1 x
2

–()
-------------------– y 0=+

Pm

l
x()Pn

k
x() xd

1–

+1

∫ 2
2l 1+
-------------- l m+()!

l m–()!
-------------------δlkδmn=

Pm

l
x() 1–()m

1 x
2

–()
m 2⁄ d

m

dx
m

--------- Pl x()=

P m–

l
x() 1–()m l m–()!

l m+()!
-------------------Pm

l
x()=
What’s New in IDL 5.4 LEGENDRE

190 Chapter 3: New IDL Routines
of the arrays, and returns an array with the same dimensions as the smallest input
array.

If any of the arguments are double-precision or if the DOUBLE keyword is set, the
result is double-precision, otherwise the result is single-precision.

Arguments

X

The expression for which is evaluated. Values for X must be in the range –1 ≤
X ≤ 1.

L

An integer scalar or array, L ≥ 0, specifying the order l of . If L is of type float,
it will be truncated.

M

An integer scalar or array, –L ≤ M ≤ L, specifying the order m of . If M is not
specified, then the default M = 0 is used and the Legendre polynomial, Pl(x), is
returned. If M is of type float, it will be truncated.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

Example 1

Compute the value of the Legendre polynomial at the following X values:

; Define the parametric X values:
X = [-0.75, -0.5, -0.25, 0.25, 0.5, 0.75]

; Compute the Legendre polynomial of order L=2:
result = LEGENDRE(X, 2)

; Print the result:
PRINT, result

The result of this is:

 0.343750 -0.125000 -0.406250 -0.406250 -0.125000 0.343750

P
m
l x()

P
m
l x()

P
m
l x()
LEGENDRE What’s New in IDL 5.4

Chapter 3: New IDL Routines 191
Example 2

Compute the value of the associated Legendre polynomial at the same X values:

; Compute the associated Legendre polynomial of order L=2, M=1:
result = LEGENDRE(X, 2, 1)
; Print the result:
PRINT, result

IDL prints:

 1.48824 1.29904 0.726184 -0.726184 -1.29904 -1.48824

This is the exact solution vector to six-decimal accuracy.

See Also

SPHER_HARM, LAGUERRE
What’s New in IDL 5.4 LEGENDRE

192 Chapter 3: New IDL Routines
MAKE_DLL

The MAKE_DLL procedure builds a sharable library from C language code which is
suitable for use by IDL’s dynamic linking features such as CALL_EXTERNAL,
LINKIMAGE, and dynamically loadable modules (DLMs). MAKE_DLL reduces the
complexity of building sharable libraries by providing a stable cross-platform method
for the user to describe the desired library, and issuing the necessary operating system
commands to build the library.

Note
MAKE_DLL is supported under UNIX, VMS, and Microsoft Windows, but is not
available for the Macintosh.

Although MAKE_DLL is very convenient, it is not intended for use as a general
purpose compiler. Instead, MAKE_DLL is specifically targeted to solving the most
common IDL dynamic linking problem: building a sharable library from C language
source files that are usable by IDL. Because of this, the following requirements
apply:

• You must have a C compiler installed on your system. It is easiest to use the
compiler used to build IDL, because MAKE_DLL already knows how to use
that compiler without any additional configuring. To determine which
compiler was used, query the !MAKE_DLL system variable with a print
statement such as the following:

PRINT, !MAKE_DLL.COMPILER_NAME

• MAKE_DLL only compiles programs written in the C language; it does not
understand Fortran, C++, or any other languages.

• MAKE_DLL provides only the functionality necessary to build C code
intended to be linked with IDL. Not every possible option supported by the C
compiler or system linker is addressed, only those commonly needed by IDL-
related C code.

MAKE_DLL solves the most common IDL-centric problem of linking C code with
IDL. To do more than this or to use a different language requires a system-specific
building process (e.g. make files, projects, etc...).
MAKE_DLL What’s New in IDL 5.4

Chapter 3: New IDL Routines 193
Syntax

MAKE_DLL, InputFiles [, OutputFile], ExportedRoutineNames [, CC=string]
[, COMPILE_DIRECTORY=path] [, DLL_PATH=variable]
[, EXPORTED_DATA=string] [, EXTRA_CFLAGS=string]
[, EXTRA_LFLAGS=string] [, INPUT_DIRECTORY=path] [, LD=string]
[, /NOCLEANUP] [, OUTPUT_DIRECTORY=path] [, /SHOW_ALL_OUTPUT]
[, /VERBOSE]

VMS-Only Keywords: [/VAX_FLOAT]

Arguments

InputFiles

A string (scalar or array) giving the names of the input C program files to be
compiled by MAKE_DLL. These names should not include any directory path
information or the .c suffix, they are simply the base file names.

The input directory is specified using the INPUT_DIRECTORY keyword, and the .c
file suffix is assumed.

OutputFile

The base name of the resulting sharable library. This name should not include any
directory path information or the sharable library suffix, which differs between
platforms (for example: .so, .a, .sl, .exe, .dll).

The output directory can be specified using the OUTPUT_DIRECTORY keyword.

If the OutputFile argument is omitted, the first name given by InputFile is used as the
base name of output file.

ExportedRoutineNames

A string (scalar or array) specifying the names of the routines to be exported (i.e., are
visible for linking) from the resulting sharable library.

Keywords

CC

If present, a template string to use in generating the C compiler commands to compile
InputFiles. If CC is not specified, the value given by the !MAKE_DLL.CC system
variable is used by default. See the discussion of !MAKE_DLL for a description of
how to write the format string for CC.
What’s New in IDL 5.4 MAKE_DLL

194 Chapter 3: New IDL Routines
COMPILE_DIRECTORY

To build a sharable library, MAKE_DLL requires a place to create the necessary
intermediate files and possibly the final library itself. If COMPILE_DIRECTORY is
specified, the directory specified is used. If COMPILE_DIRECTORY is not
specified, the directory given by the !MAKE_DLL.COMPILE_DIRECTORY system
variable is used.

DLL_PATH

If present, the name of a variable to receive the complete file path for the newly
created sharable library. The location of the resulting sharable library depends on the
setting of the OUTPUT_DIRECTORY or COMPILE_DIRECTORY keywords as
well as the !MAKE_DLL.COMPILE_DIRECTORY system variable, and different
platforms use different file suffixes to indicate sharable libraries. Use of the
DLL_PATH keyword makes it possible to determine the resulting file path in a simple
and portable manner.

EXPORTED_DATA

A string (scalar or array) containing the names of variables to be exported (i.e., are
visible for linking) from the resulting sharable library.

EXTRA_CFLAGS

If present, a string supplying extra options for the command used to execute the C
compiler to compile the files given by InputFiles. This keyword is frequently used to
specify header file include directories. This text is inserted in place of the %X format
code in the compile string. See the discussion of the CC keyword and
!MAKE_DLL.CC system variable for more information.

EXTRA_LFLAGS

If present, a string supplying extra options for the command used to execute the
linker when combining the object files to produce the sharable library. This keyword
is frequently used to specify libraries to be included in the link, and is inserted in
place of the %X format code in the linker string. See the discussion of the LD
keyword and !MAKE_DLL.LD system variable for more information.

INPUT_DIRECTORY

If present, the path to the directory containing the source C files listed in InputFiles.
If INPUT_DIRECTORY is not specified, the directory given by
COMPILE_DIRECTORY is assumed to contain the files.
MAKE_DLL What’s New in IDL 5.4

Chapter 3: New IDL Routines 195
LD

If present, a template string to use when generating the linker command to generate
the resulting sharable library. If LD is not specified, the value given by the
!MAKE_DLL.LD system variable is used by default. See the discussion of
!MAKE_DLL for a description of how to write the format string for LD.

NOCLEANUP

To produce a sharable library, MAKE_DLL produces several intermediate files:

1. A shell script (UNIX), command file (VMS), or batch file (Windows) that is
then executed via SPAWN to build the library.

2. A linker options file. This file is used to control the linker. MAKE_DLL uses it
to cause the routines given by the ExportedRoutineNames argument (and
EXPORTED_DATA keyword) to be exported from the resulting sharable
library. The general platform terminology is shown below.

3. Object files, resulting from compiling the source C files given by the
InputFiles argument.

4. A log file that captures the output from executing the script, and which can be
used for debugging in case of error.

By default, MAKE_DLL deletes all of these intermediate files once the sharable
library has been successfully built. Setting the NOCLEANUP keyword prevents
MAKE_DLL from removing them.

Note
Set the NOCLEANUP keyword (possibly in conjunction with VERBOSE) for
trouble shooting, or to read the files for additional information on how
MAKE_DLL works.

Platform Linker Options File Terminology

UNIX export file, or linker map file

VMS linker options file (.OPT)

Windows a .DEF file

Table 3-2: Platform Terminology for Linker Options File
What’s New in IDL 5.4 MAKE_DLL

196 Chapter 3: New IDL Routines
OUTPUT_DIRECTORY

By default, MAKE_DLL creates the resulting sharable library in the compile
directory specified by the COMPILE_DIRECTORY keyword or the
!MAKE_DLL.COMPILE_DIRECTORY system variable. The
OUTPUT_DIRECTORY keyword can be used to override this and explicitly specify
where the library file should go.

SHOW_ALL_OUTPUT

MAKE_DLL normally produces no output unless an error prevents successful
building of the sharable library. Set SHOW_ALL_OUTPUT to see all output
produced by the spawned process building the library.

VERBOSE

If set, VERBOSE causes MAKE_DLL to issue informational messages as it carries
out the task of building the sharable library. These messages include information on
the intermediate files created to build the library and how they are used.

VMS-Only Keywords

This keyword is for VMS platforms only, and is ignored on all other platforms.

VAX_FLOAT

If set, specifies the sharable library to be compiled for VAX F (single) or D (double)
floating point formats. The default is to use the IEEE format used by IDL.

!MAKE_DLL System Variable

The MAKE_DLL procedure and CALL_EXTERNAL function’s AUTO_GLUE
keyword use the standard system C compiler and linker to generate sharable libraries
that can be used by IDL in various contexts (CALL_EXTERNAL, DLMs,
LINKIMAGE). There is a great deal of variation possible in the use of these tools
between different platforms, operating system versions, and compiler releases. The
!MAKE_DLL system variable is used to configure how IDL uses them for the current
platform.

The !MAKE_DLL structure is defined as follows:

{ !MAKE_DLL, COMPILE_DIRECTORY:’’, COMPILER_NAME:’’, CC:’’, LD:’’}

The meaning of the fields of !MAKE_DLL are given in Table D-2. When expanding
!MAKE_DLL.CC and !MAKE_DLL.LD, IDL substitutes text in place of the
MAKE_DLL What’s New in IDL 5.4

Chapter 3: New IDL Routines 197
PRINTF style codes described in the following table. These codes are case-
insensitive, and can be either upper or lower case.

Note
It is possible to use C compilers other than the one assumed by RSI in
!MAKE_DLL to build sharable libraries. To do so, you can alter the contents of
!MAKE_DLL or use the CC and/or LD keyword to MAKE_DLL and
CALL_EXTERNAL. Please understand that RSI cannot and does not maintain a
list of all possible compilers and the necessary compiler options. This information
is available in your compiler and system documentation. It is the programmers
responsibility to understand the rules for their chosen compiler.

Field Meaning

COMPILE_DIRECTORY IDL requires a place to create the intermediate files
necessary to build a sharable library, and possibly the
final library itself. Unless told to use an explicit
directory, it uses the directory given by the
COMPILE_DIRECTORY field of !MAKE_DLL. If
the IDL_MAKE_DLL_COMPILE_DIRECTORY
environment variable is set, IDL uses its value to
initialize the COMPILE_DIRECTORY field.
Otherwise, IDL supplies a standard location.

Note - Note that if the directory given by
!MAKE_DLL.COMPILE_DIRECTORY does not
exist when IDL needs it, IDL automatically creates it
for you.

COMPILER_NAME A string containing the name of the C compiler used
by RSI to build the currently running IDL. This field
is not used by IDL, and exists solely for informational
purposes and to help the end user decide which C
compiler to install on their system.

Table 3-3: Meaning of !MAKE_DLL fields
What’s New in IDL 5.4 MAKE_DLL

198 Chapter 3: New IDL Routines
The following table describes the substitution codes for the CC and LD fields:

CC A string used by IDL as a template to construct the
command for using the C compiler. This template
uses PRINTF style substitution codes, as described in
the following table.

LD A string used by IDL as a template to construct the
command for using the linker. This template uses
PRINTF style substitution codes, as described in the
following table.

Code Meaning

%B %b The base name of a C file to compile. For example, if the C
file is moose.c, then %B substitutes moose.

%C %c The name of the C file.

%E %e The name of the linker options file. This file, which is
automatically generated by IDL as needed, is used to control
the linker. Under UNIX, the system documentation refers to
this as an export file, or a linker map file. VMS calls it a linker
options file (.OPT). Microsoft Windows calls it a .DEF file.

%F %f A floating point switch to C compiler. This is only meaningful
under VMS, and corresponds to the VAX_FLOAT keyword to
MAKE_DLL and CALL_EXTERNAL.

%L %l The name of the resulting sharable library. IDL constructs this
name by using the base name (%B) and adding the appropriate
suffix for the current platform (.dll, .so, .sl, .exe, ...).

%O %o An object file name. IDL constructs this name by using the
base name (%B) and adding the appropriate suffix for the
current platform (.o, .obj).

Table 3-4: Description of CC and LD Field Codes

Field Meaning

Table 3-3: Meaning of !MAKE_DLL fields (Continued)
MAKE_DLL What’s New in IDL 5.4

Chapter 3: New IDL Routines 199
Example 1

Testmodule DLM

The IDL distribution contains an example of a simple DLM (dynamically loadable
module) in the external/dlm subdirectory. This example consists of a single C
source file, and the desired sharable library exports a single function called
IDL_Load. The following MAKE_DLL statement builds this sharable library,
leaving the resulting file in the directory given by
!MAKE_DLL.COMPILE_DIRECTORY:

; Locate the source file:
INDIR = FILEPATH(’’, SUBDIRECTORY=[’external’, ’dlm’])
; Build the sharable library:
MAKE_DLL, ’testmodule’, ’IDL_Load’, INPUT_DIRECTORY=INDIR

Example 2

Using GCC

IDL is built with the standard vendor-supported C compiler in order to get maximum
integration with the target system. MAKE_DLL assumes that you have the same
compiler installed on your system and its defaults are targeted to use it. To use other
compilers, you tell MAKE_DLL how to use them.

For example, many IDL users have the gcc compiler installed on their systems. This
example (tested under 32-bit Solaris 7 using gcc 2.95.2) shows how to use gcc to
build the testmodule sharable library from the previous example:

; We need the include directory for the IDL export.h header

%X %x When expanding !MAKE_DLL.CC, any text supplied via the
EXTRA_CFLAGS keyword to MAKE_DLL or
CALL_EXTERNAL is inserted in place of %X. IDL does not
interpret this text. It is the users responsibility to ensure that it
is meaningful in the command. When expanding
!MAKE_DLL.LD, the text from the EXTRA_LFLAGS
keyword is substituted. The primary use for this code is to
include necessary header include directories and link libraries.

%% Replaced with a single % character.

Code Meaning

Table 3-4: Description of CC and LD Field Codes (Continued)
What’s New in IDL 5.4 MAKE_DLL

200 Chapter 3: New IDL Routines
; file. One way to get this is to extract it from the
; !MAKE_DLL system variable using the STREGEX function
INCLUDE=STREGEX(!MAKE_DLL.CC, '-I[^]+', /EXTRACT)
; Locate the source file
INDIR = FILEPATH('', SUBDIRECTORY=['external', 'dlm'])
; Build the sharable library, using the CC keyword to specify gcc:
MAKE_DLL, 'testmodule', 'IDL_Load', INPUT_DIRECTORY=INDIR, $

CC='gcc -c -fPIC '+ INCLUDE + '%C -o %O'
MAKE_DLL What’s New in IDL 5.4

Chapter 3: New IDL Routines 201
MAP_2POINTS

The MAP_2POINTS function returns parameters such as distance, azimuth, and path
relating to the great circle or rhumb line connecting two points on a sphere.

This routine is written in the IDL language. Its source code can be found in the file
map_2points.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = MAP_2POINTS(lon0, lat0, lon1, lat1 [, DPATH=value | , /METERS |
, /MILES | , NPATH=integer{2 or greater} | , /PARAMETERS | , RADIUS=value]
[, /RADIANS] [, /RHUMB])

Return Value

This function returns a two-element vector containing the distance and azimuth of the
great circle or rhumb line connecting the two points, P0 to P1, in the specified
angular units, unless one or more of the keywords NPATH, DPATH, METERS,
MILES, PARAMETERS, or RADIUS is specified. See the keyword descriptions for
the return value associated with each of these keywords.

If MILES, METERS, or RADIUS is not set, distances are angular distance, from 0 to
180 degrees (or 0 to !PI if the RADIANS keyword is set). Azimuth is measured in
degrees or radians, east of north.

Arguments

Lon0, Lat0

Longitude and latitude of the first point, P0.

Lon1, Lat1

Longitude and latitude of the second point, P1.

Keywords

DPATH

Set this keyword to a value specifying the maximum angular distance between the
points on the path in the prevalent units, degrees or radians.
What’s New in IDL 5.4 MAP_2POINTS

202 Chapter 3: New IDL Routines
METERS

Set this keyword to return the distance between the two points in meters, calculated
using the Clarke 1866 equatorial radius of the earth.

MILES

Set this keyword to return the distance between the two points in miles, calculated
using the Clarke 1866 equatorial radius of the earth.

NPATH

Set this keyword to a value specifying the number of points to return. If this keyword
is set, the function returns a (2, NPATH) array containing the longitude/latitude of the
points on the great circle or rhumb line connecting P0 and P1. For a great circle, the
points will be evenly spaced in distance, while for a rhumb line, the points will be
evenly spaced in longitude.

Note
This keyword must be set to an integer of 2 or greater.

PARAMETERS

Set this keyword to return the parameters determining the great circle connecting the
two points, [sin(c), cos(c), sin(az), cos(az)], where c is the great circle angular
distance, and az is the azimuth of the great circle at P0, in degrees east of north.

RADIANS

Set this keyword if inputs and angular outputs are to be specified in radians. The
default is degrees.

RADIUS

Set this keyword to a value specifying the radius of the sphere to be used to calculate
the distance between the two points. If this keyword is specified, the function returns
the distance between the two points calculated using the given radius.

RHUMB

Set this keyword to return the distance and azimuth of the rhumb line connecting the
two points, P0 to P1. The default is to return the distance and azimuth of the great
circle connecting the two points. A rhumb line is the line of constant direction
connecting two points.
MAP_2POINTS What’s New in IDL 5.4

Chapter 3: New IDL Routines 203
Examples

The following examples use the geocoordinates of two points, Boulder and London:

B = [-105.19, 40.02] ;Longitude, latitude in degrees.
L = [-0.07, 51.30]

Example 1

Print the angular distance and azimuth, from B, of the great circle connecting the two
points:

PRINT, MAP_2POINTS(B[0], B[1], L[0], L[1])

IDL prints 67.854333 40.667833

Example 2

Print the angular distance and course (azimuth), connecting the two points:

PRINT, MAP_2POINTS(B[0], B[1], L[0], L[1],/RHUMB)

IDL prints 73.966283 81.228057

Example 3

Print the distance in miles between the two points:

PRINT, MAP_2POINTS(B[0], B[1], L[0], L[1],/MILES)

IDL prints 4693.5845

Example 4

Print the distance in miles along the rhumb line connecting the two points:

PRINT, MAP_2POINTS(B[0], B[1], L[0], L[1], /MILES, /RHUMB)

IDL prints 5116.3571

Example 5

Display a map containing the two points, and annotate the map with both the great
circle and the rhumb line path between the points, drawn at one degree increments:

MAP_SET, /MOLLWEIDE, 40,-50, /GRID, SCALE=75e6,/CONTINENTS
PLOTS, MAP_2POINTS(B[0], B[1], L[0], L[1],/RHUMB, DPATH=1)
PLOTS, MAP_2POINTS(B[0], B[1], L[0], L[1],DPATH=1)
What’s New in IDL 5.4 MAP_2POINTS

204 Chapter 3: New IDL Routines
This displays the following map:

See Also

MAP_SET

Figure 3-4: Map annotated with great circle and rhumb line path between
Boulder and London, drawn at one degree increments.
MAP_2POINTS What’s New in IDL 5.4

Chapter 3: New IDL Routines 205
MATRIX_MULTIPLY

The MATRIX_MULTIPLY function calculates the IDL # operator of two (possibly
transposed) arrays. The transpose operation (if desired) is done simultaneously with
the multiplication, thus conserving memory and increasing the speed of the
operation. If the arrays are not transposed, then MATRIX_MULTIPLY is equivalent
to using the # operator.

Syntax

Result = MATRIX_MULTIPLY(A, B [, /ATRANSPOSE] [, /BTRANSPOSE])

Return Value

The type for the result depends upon the input type. For byte or integer arrays, the
result has the type of the next-larger integer type that could contain the result (for
example, byte, integer, or long input returns type long integer). For floating-point, the
result has the same type as the input.

For the case of no transpose, the resulting array has the same number of columns as
the first array and the same number of rows as the second array. The second array
must have the same number of columns as the first array has rows.

Note
If A and B arguments are vectors, then C = MATRIX_MULTIPLY(A, B) is a
matrix with Cij = AiBj. Mathematically, this is equivalent to the outer product,
usually denoted by A⊗Β.

Arguments

A

The left operand for the matrix multiplication. Dimensions higher than two are
ignored.

B

The right operand for the matrix multiplication. Dimensions higher than two are
ignored.
What’s New in IDL 5.4 MATRIX_MULTIPLY

206 Chapter 3: New IDL Routines
Keywords

ATRANSPOSE

Set this keyword to multiply using the transpose of A.

BTRANSPOSE

Set this keyword to multiply using the transpose of B.

The # Operator vs. MATRIX_MULTIPLY

The following table illustrates how various operations are performed using the #
operator versus the MATRIX_MULTIPLY function:

Note
MATRIX_MULTIPLY can also be used in place of the ## operator. For example,
A ## B is equivalent to MATRIX_MULTIPLY(B, A), and A ## TRANSPOSE(B) is
equivalent to MATRIX_MULTIPLY(B, A, /ATRANSPOSE).

See Also

“Multiplying Arrays” in Chapter 16 of Using IDL

Operator Function

A # B MATRIX_MULTIPLY(A, B)

transpose(A) # B MATRIX_MULTIPLY(A, B, /ATRANSPOSE)

A # transpose(B) MATRIX_MULTIPLY(A, B, /BTRANSPOSE)

transpose(A) # transpose(B) MATRIX_MULTIPLY(A, B, /ATRANSPOSE,
/BTRANSPOSE)

Table 3-5: The # Operator vs. MATRIX_MULTIPLY
MATRIX_MULTIPLY What’s New in IDL 5.4

Chapter 3: New IDL Routines 207
MEMORY

The MEMORY function returns information on the amount of dynamic memory
currently in use by the IDL session if no keywords are set. If a keyword is set,
MEMORY returns the specified quantity.

Syntax

Result = MEMORY([, /CURRENT | , /HIGHWATER | , /NUM_ALLOC |
, /NUM_FREE | , /STRUCTURE] [, /L64])

Return Value

The return value is a vector that is always of integer type. The following table
describes the information returned if no keywords are set:

Arguments

None.

Keywords

The following keywords determine the return value of the MEMORY function.
Except for L64, all of the keywords are mutually exclusive — specify at most one of
the following.

Element Contents

Result[0] Amount of dynamic memory (in bytes) currently in use by the
IDL session.

Result[1] The number of times IDL has made a memory allocation request
from the underlying system.

Result[2] The number of times IDL has made a request to free memory
from the underlying system.

Result[3] High water mark: The maximum amount of dynamic memory
used since the last time the MEMORY function or
HELP, /MEMORY procedure was called.

Table 3-6: MEMORY Function Return Values
What’s New in IDL 5.4 MEMORY

208 Chapter 3: New IDL Routines
CURRENT

Set this keyword to return the amount of dynamic memory (in bytes) currently in use
by the IDL session.

HIGHWATER

Set this keyword to return the maximum amount of dynamic memory used since the
last time the MEMORY function or HELP,/MEMORY procedure was called. This
can be used to determine maximum memory use of a code sequence as shown in the
example below.

L64

By default, the result of MEMORY is 32-bit integer when possible, and 64-bit integer
if the size of the returned values requires it. Set L64 to force 64-bit integers to be
returned in all cases.

Note
Only 64-bit versions of IDL are capable of using enough memory to require 64-bit
MEMORY output. Check the value of !VERSION.MEMORY_BITS to see if your
IDL is 64-bit or not.

NUM_ALLOC

Returns the number of times IDL has requested dynamic memory from the
underlying system.

NUM_FREE

Returns the number of times IDL has returned dynamic memory to the underlying
system.

STRUCTURE

Set this keyword to return all available information about Expression in a structure.
The result will be an IDL_MEMORY (32-bit) structure when possible, and an
IDL_MEMORY64 structure otherwise. Set L64 to force an IDL_MEMORY64
structure to be returned in all cases.
MEMORY What’s New in IDL 5.4

Chapter 3: New IDL Routines 209
The following are descriptions of the fields in the returned structure:

Example

To determine how much dynamic memory is required to execute a sequence of IDL
code:

; Get current allocation and reset the high water mark:
start_mem = MEMORY(/CURRENT)

; Arbitrary code goes here.

PRINT, 'Memory required: ', MEMORY(/HIGHWATER) - start_mem

The MEMORY function can also be used in conjunction with DIALOG_MESSAGE
as follows:

; Get current dymanic memory in use:
mem = MEMORY(/CURRENT)
; Prepare dialog message:
message = 'Current amount of dynamic memory used is '
sentence = message + STRTRIM(mem,2)+' bytes.'
; Display the dialog message containing memory usage statement:
status = DIALOG_MESSAGE (sentence, /INFORMATION)

See Also

HELP

Field Description

CURRENT Current dynamic memory in use.

NUM_ALLOC Number of calls to allocate memory.

NUM_FREE Number of calls to free memory.

HIGHWATER Maximum dynamic memory used since last call for this
information.

Table 3-7: STRUCTURE Field Descriptions
What’s New in IDL 5.4 MEMORY

210 Chapter 3: New IDL Routines
RADON

The RADON function implements the Radon transform, used to detect features
within a two-dimensional image. This function can be used to return either the Radon
transform, which transforms lines through an image to points in the Radon domain,
or the Radon backprojection, where each point in the Radon domain is transformed to
a straight line in the image.

Syntax

Radon Transform:

Result = RADON(Array [, /DOUBLE] [, DRHO=scalar] [, DX=scalar]
[, DY=scalar] [, /GRAY] [, /LINEAR] [, NRHO=scalar] [, NTHETA=scalar]
[, RHO=variable] [, RMIN=scalar] [, THETA=variable] [, XMIN=scalar]
[, YMIN=scalar])

Radon Backprojection:

Result = RADON(Array, /BACKPROJECT, RHO=variable, THETA=variable
[, /DOUBLE] [, DX=scalar] [, DY=scalar] [, /LINEAR] [, NX=scalar]
[, NY=scalar] [, XMIN=scalar] [, YMIN=scalar])

Return Value

The result of this function is a two-dimensional floating-point array, or a complex
array if the input image is complex. If Array is double-precision, or if the DOUBLE
keyword is set, the result is double-precision, otherwise, the result is single-precision.

Radon Transform Theory

The Radon transform is used to detect features within an image. Given a function
A(x, y), the Radon transform is defined as:

R θ ρ,() A ρ θcos s θsin– ρ θsin s θcos+(,)∞–
∞∫= ds
RADON What’s New in IDL 5.4

Chapter 3: New IDL Routines 211
This equation describes the integral along a line s through the image, where ρ is the
distance of the line from the origin and θ is the angle from the horizontal.

In medical imaging, each point R(θ, ρ) is called a ray-sum, while the resulting image
is called a shadowgram. An image can be reconstructed from its ray-sums using the
backprojection operator:

 where the output, B(x, y), is an image of A(x, y) blurred by the Radon transform.

How IDL Implements the Radon Transform

To avoid the use of a two-dimensional interpolation and decrease the interpolation
errors, the Radon transform equation is rotated by θ, and the interpolation is then
done along the line s. The transform is divided into two regions, one for nearly-
horizontal lines (45° < θ < 135°), and the other for steeper lines
(θ ≤ 45°; 135°≤ θ ≤ 180°), where θ is assumed to lie on the interval [0°,180°].

Figure 3-5: The Radon Transform

B x y,() R θ x θcos, y θsin+()
0
π∫= dθ
What’s New in IDL 5.4 RADON

212 Chapter 3: New IDL Routines
For nearest-neighbor interpolation (the default), the discrete transform formula for an
image A(m, n) [m = 0, ..., M–1, n = 0, ..., N–1] is:

where brackets [⋅] indicate rounding to the nearest integer, and the slope and offsets
are given by:

For linear interpolation, the transform is:

where the slope and offsets are the same as above, and ⋅ indicates flooring to the
nearest lower integer. The weighting w is given by the difference between am + b and
its floored value, or between a’n + b’ and its floored value.

How IDL Implements the Radon Backprojection

For the backprojection transform, the discrete formula for nearest-neighbor
interpolation is:

R θ ρ(,)

∆x
θsin

-------------- A
m
∑ m am b+[](,)

∆y
θcos

--------------- A
n
∑ a'n b'+[] n(,)

θsin
2

2
------->

θsin
2

2
-------≤

=

a
∆x
∆y
------ θcos

θsin
------------– b

ρ xmin– θcos ymin– θsin

∆y θsin
--==

a'
1
a
--- b'

ρ xmin– θcos ymin– θsin

∆x θcos
--==

R θ ρ(,)

∆x
θsin

-------------- 1(w–)
m
∑ A m am b+(,) wA m am b+ 1+(,)+

∆y
θcos

--------------- 1 w–()A
n
∑ a'n b'+ n(,) wA a'n b'+ 1+ n(,)+

θsin
2

2
------->

θsin
2

2
-------≤

=

B m n(,) ∆θ R
t

∑ θt ρ[](,)=
RADON What’s New in IDL 5.4

Chapter 3: New IDL Routines 213
with the nearest-neighbor for ρ given by:

For backprojection with linear interpolation:

and ρ is the same as in the nearest-neighbor.

Arguments

Array

The two-dimensional array of size M by N to be transformed.

Keywords

BACKPROJECT

If set, the backprojection is computed, otherwise, the forward transform is computed.

Note
The Radon backprojection does not return the original image. Instead, it returns an
image blurred by the Radon transform. Because the Radon transform is not one-to-
one, multiple (x, y) points are mapped to a single (θ, ρ).

DOUBLE

Set this keyword to force the computation to be done using double-precision
arithmetic.

DRHO

Set this keyword equal to a scalar specifying the spacing between ρ coordinates,
expressed in the same units as Array. The default is one-half of the diagonal distance
between pixels, 0.5[(DX2 + DY2)]1/2 . Smaller values produce finer resolution, and
are useful for zooming in on interesting features. Larger values may result in

ρ m(∆x xmin) θcos t n∆y ymin+()+ + θsin t ρmin–{ }∆ρ 1–
=

B m n(,) ∆θ 1 w–()
t

∑ R θt ρ(,) wR θt ρ 1+(,)+=

w ρ ρ–=
What’s New in IDL 5.4 RADON

214 Chapter 3: New IDL Routines
undersampling, and are not recommended. If BACKPROJECT is specified, this
keyword is ignored.

DX

Set this keyword equal to a scalar specifying the spacing between the horizontal (x)
coordinates. The default is 1.0.

DY

Set this keyword equal to a scalar specifying the spacing between the vertical (y)
coordinates. The default is 1.0.

GRAY

Set or omit this keyword to perform a weighted Radon transform, with the weighting
given by the pixel values. If GRAY is explicitly set to zero, the image is treated as a
binary image with all nonzero pixels considered as 1.

LINEAR

Set this keyword to use linear interpolation rather than the default nearest-neighbor
sampling. Results are more accurate but slower when linear interpolation is used.

NRHO

Set this keyword equal to a scalar specifying the number of ρ coordinates to use. The
default is 2 CEIL([MAX(x2 + y2)]1/2 / DRHO) + 1. If BACKPROJECT is specified,
this keyword is ignored.

NTHETA

Set this keyword equal to a scalar specifying the number of θ coordinates to use over
the interval [0, π]. The default is CEIL(π [(M2 + N2)/2]1/2). Larger values produce
smoother results, and are useful for filtering before backprojection. Smaller values
result in broken lines in the transform, and are not recommended. If BACKPROJECT
is specified, this keyword is ignored.

NX

If BACKPROJECT is specified, set this keyword equal to a scalar specifying the
number of horizontal coordinates in the output Result. The default is
FLOOR(2 MAX(|RHO|)(DX2 + DY2)-1/2 + 1). For the forward transform this
keyword is ignored.
RADON What’s New in IDL 5.4

Chapter 3: New IDL Routines 215
NY

If BACKPROJECT is specified, set this keyword equal to a scalar specifying the
number of vertical coordinates in the output Result. The default is
FLOOR(2 MAX(|RHO|)(DX2 + DY2)-1/2 + 1). For the forward transform, this
keyword is ignored.

RHO

For the forward transform, set this keyword to a named variable that will contain the
radial (ρ) coordinates. If BACKPROJECT is specified, this keyword must contain the
ρ coordinates of the input Array. The ρ coordinates should be evenly spaced and in
increasing order.

RMIN

Set this keyword equal to a scalar specifying the minimum ρ coordinate to use for the
forward transform. The default is –0.5(NRHO – 1) DRHO. If BACKPROJECT is
specified, this keyword is ignored.

THETA

For the forward transform, set this keyword to a named variable containing a vector
of angular (θ) coordinates to use for the transform. If NTHETA is specified instead,
and THETA is set to a named variable, on exit THETA will contain the θ
coordinates. If BACKPROJECT is specified, this keyword must contain the θ
coordinates of the input Array.

XMIN

Set this keyword equal to a scalar specifying the x-coordinate of the lower-left corner
of the input Array. The default is – (M–1)/2, where Array is an M by N array. If
BACKPROJECT is specified, set this keyword equal to a scalar specifying the x-
coordinate of the lower-left corner of the Result. In this case the default is
–DX (NX–1)/2.

YMIN

Set this keyword equal to a scalar specifying the y-coordinate of the lower-left corner
of the input Array. The default is – (N–1)/2, where Array is an M by N array. If
BACKPROJECT is specified, set this keyword equal to a scalar specifying the y-
coordinate of the lower-left corner of the Result. In this case, the default is
–DY (NY–1)/2.
What’s New in IDL 5.4 RADON

216 Chapter 3: New IDL Routines
Example

This example displays the Radon transform and the Radon backprojection:

PRO radon_example

DEVICE, DECOMPOSED=0

;Create an image with a ring plus random noise:
x = (LINDGEN(128,128) MOD 128) - 63.5
y = (LINDGEN(128,128)/128) - 63.5
radius = SQRT(x^2 + y^2)
array = (radius GT 40) AND (radius LT 50)
array = array + RANDOMU(seed,128,128)

;Create display window, set graphics properties:
WINDOW, XSIZE=440,YSIZE=700, TITLE='Radon Example'
!P.BACKGROUND = 255 ; white
!P.COLOR = 0 ; black
!P.FONT=2
ERASE

XYOUTS, .05, .94, 'Ring and Random Pixels', /NORMAL
;Display the image. 255b changes black values to white:
TVSCL, 255b - array, .05, .75, /NORMAL

;Calculate and display the Radon transform:
XYOUTS, .05, .70, 'Radon Transform', /NORMAL
result = RADON(array, RHO=rho, THETA=theta)
TVSCL, 255b - result, .08, .32, /NORMAL
PLOT, theta, rho, /NODATA, /NOERASE, $

POSITION=[0.08,0.32, 1, 0.68], $
XSTYLE=9,YSTYLE=9,XTITLE='Theta', YTITLE='R'

;For simplicity in this example, remove everything except
;the two stripes. A better (and more complicated) method would
;be to choose a threshold for the result at each value of theta,
;perhaps based on the average of the result over the theta
;dimension.
result[*,0:55] = 0
result[*,73:181] = 0
result[*,199:*] = 0

;Find the Radon backprojection and display the output:
XYOUTS, .05, .26, 'Radon Backprojection', /NORMAL
backproject = RADON(result, /BACKPROJECT, RHO=rho, THETA=theta)
TVSCL, 255b - backproject, .05, .07, /NORMAL

END
RADON What’s New in IDL 5.4

Chapter 3: New IDL Routines 217
The following figure displays the program output. The top image is an image of a
ring and random pixels, or noise. The center image is the Radon transform, and
displays the line integrals through the image. The bottom image is the Radon
backprojection, after filtering all noise except for the two strong horizontal stripes in
the middle image.

See Also

HOUGH, VOXEL_PROJ

References

1. Herman, Gabor T. Image Reconstruction from Projections. New York:
Academic Press, 1980.

2. Hiriyannaiah, H. P. X-ray computed tomography for medical imaging. IEEE
Signal Processing Magazine, March 1997: 42-58.

Figure 3-6: Radon Example - Original image (top), Radon transform (center), and
backprojection of the altered Radon transform (bottom).
What’s New in IDL 5.4 RADON

218 Chapter 3: New IDL Routines
3. Jain, Anil K. Fundamentals of Digital Image Processing. Englewood Cliffs,
NJ: Prentice-Hall, 1989.

4. Toft, Peter. The Radon Transform: Theory and Implementation. Denmark:
Technical University; 1996. Ph.D. Thesis.
RADON What’s New in IDL 5.4

Chapter 3: New IDL Routines 219
SAVGOL

The SAVGOL function returns the coefficients of a Savitzky-Golay smoothing filter,
which can then be applied using the CONVOL function. The Savitzky-Golay
smoothing filter, also known as least squares or DISPO (digital smoothing
polynomial), can be used to smooth a noisy signal.

The filter is defined as a weighted moving average with weighting given as a
polynomial of a certain degree. The returned coefficients, when applied to a signal,
perform a polynomial least-squares fit within the filter window. This polynomial is
designed to preserve higher moments within the data and reduce the bias introduced
by the filter. The filter can use any number of points for this weighted average.

This filter works especially well when the typical peaks of the signal are narrow. The
heights and widths of the curves are generally preserved.

Tip
You can use this function in conjunction with the CONVOL function for smoothing
and optionally for numeric differentiation.

This routine is written in the IDL language. Its source code can be found in the file
savgol.pro in the lib subdirectory of the IDL distribution.

SAVGOL is based on the Savitzky-Golay Smoothing Filters described in section
14.8 of Numerical Recipes in C: The Art of Scientific Computing (Second Edition),
published by Cambridge University Press, and is used by permission.

Syntax

Result = SAVGOL(Nleft, Nright, Order, Degree [, /DOUBLE])

Return Value

This function returns an array of floating-point numbers that are the coefficients of
the smoothing filter.

Arguments

Nleft

An integer specifying the number of data points to the left of each point to include in
the filter.
What’s New in IDL 5.4 SAVGOL

220 Chapter 3: New IDL Routines
Nright

An integer specifying the number of data points to the right of each point to include
in the filter.

Note
Larger values of Nleft and Nright produce a smoother result at the expense of
flattening sharp peaks.

Order

An integer specifying the order of the derivative desired. For smoothing, use order 0.
To find the smoothed first derivative of the signal, use order 1, for the second
derivative, use order 2, etc.

Note
Order must be less than or equal to the value specified for Degree.

Degree

An integer specifying the degree of smoothing polynomial. Typical values are 2 to 4.
Lower values for Degree will produce smoother results but may introduce bias,
higher values for Degree will reduce the filter bias, but may “over fit” the data and
give a noisier result.

Note
Degree must be less than the filter width (Nleft + Nright + 1).

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Tip
The DOUBLE keyword is recommended for Degree greater than 9.
SAVGOL What’s New in IDL 5.4

Chapter 3: New IDL Routines 221
Example

The following example creates a noisy 400-point vector with 4 Gaussian peaks of
decreasing width. It then plots the original vector, the vector smoothed with a 33-
point Boxcar smoother (the SMOOTH function), and the vector smoothed with 33-
point wide Savitzky-Golay filter of degree 4. The bottom plot shows the first
derivative of the noisy signal and the first derivative using the Savitzky-Golay filter
of degree 4:

n = 401 ; number of points
np = 4 ; number of peaks
; Form the baseline:
y = REPLICATE(0.5, n)
; Index the array:
x = FINDGEN(n)
; Add each Gaussian peak:
FOR i=0, np-1 DO BEGIN
 c = (i + 0.5) * FLOAT(n)/np ; Center of peak
 peak = -(3 * (x-c) / (75. / 1.5 ^ i))^2
 ; Add Gaussian. Cutoff of -50 avoids underflow errors for
 ; tiny exponentials:
 y = y + EXP(peak>(-50))
ENDFOR
; Add noise:
y1 = y + 0.10 * RANDOMN(-121147, n)

!P.MULTI=[0,1,3]

; Boxcar smoothing width 33:
PLOT, x, y1, TITLE='Signal+Noise; Smooth (width33)'
OPLOT, SMOOTH(y1, 33, /EDGE_TRUNCATE), THICK=3

; Savitzky-Golay with 33, 4th degree polynomial:
savgolFilter = SAVGOL(16, 16, 0, 4)
PLOT, x, y1, TITLE='Savitzky-Golay (width 33, 4th degree)'
OPLOT, x, CONVOL(y1, savgolFilter, /EDGE_TRUNCATE), THICK=3

; Savitzky-Golay width 33, 4th degree, 1st derivative:
savgolFilter = SAVGOL(16, 16, 1, 4)
PLOT, x, DERIV(y1), YRANGE=[-0.2, 0.2], TITLE=$
 'First Derivative: Savitzky-Golay(width 33, 4th degree, order 1)'
OPLOT, x, CONVOL(y1, savgolFilter, /EDGE_TRUNCATE), THICK=3

The following is the resulting plot. Notice how the Savitzky-Golay filter preserves
the high peaks but does not do as much smoothing on the flatter regions. Note also
What’s New in IDL 5.4 SAVGOL

222 Chapter 3: New IDL Routines
that the Savitzky-Golay filter is able to construct a good approximation of the first
derivative.

See Also

CONVOL, DIGITAL_FILTER, SMOOTH

Figure 3-7: SAVGOL Example
SAVGOL What’s New in IDL 5.4

Chapter 3: New IDL Routines 223
SOCKET

The SOCKET procedure, supported on UNIX and Microsoft Windows platforms,
opens a client-side TCP/IP Internet socket as an IDL file unit. Such files can be used
in the standard manner with any of IDL’s Input/Output routines.

Tip
RSI recommends that you don’t use the EOF procedure as a way to check to see if a
socket is empty. It is recommended that you structure your communication across
the socket so that using EOF is not necessary to know when the communication is
complete.

Syntax

SOCKET, Unit, Host, Port [, CONNECT_TIMEOUT=value] [, ERROR=variable]
[, /GET_LUN] [, /RAWIO] [, READ_TIMEOUT=value] [, /SWAP_ENDIAN]
[, /SWAP_IF_BIG_ENDIAN] [, /SWAP_IF_LITTLE_ENDIAN] [, WIDTH=value]
[, WRITE_TIMEOUT=value]

UNIX-Only Keywords: [, /STDIO]

Arguments

Unit

The unit number to associate with the opened socket.

Host

The name of the host to which the socket is connected. This can be either a standard
Internet host name (e.g. ftp.ResearchSystems.com) or a dot-separated numeric
address (e.g. 192.5.156.21).

Port

The port to which the socket is connected on the remote machine. If this is a well-
known port (as contained in the /etc/services file on a UNIX host), then you can
specify its name (e.g. daytime); otherwise, specify a number.
What’s New in IDL 5.4 SOCKET

224 Chapter 3: New IDL Routines
Keywords

CONNECT_TIMEOUT

Set this keyword to the number of seconds to wait before giving up and issuing an
error to shorten the connect timeout from the system-supplied default. Most experts
recommend that you not specify an explicit timeout, and instead use your operating
system defaults.

Note
Although you can use CONNECT_TIMEOUT to shorten the timeout, you cannot
increase it past the system-supplied default.

ERROR

A named variable in which to place the error status. If an error occurs in the attempt
to open File, IDL normally takes the error handling action defined by the
ON_ERROR and/or ON_IOERROR procedures. SOCKET always returns to the
caller without generating an error message when ERROR is present. A nonzero error
status indicates that an error occurred. The error message can then be found in the
system variable !ERR_STRING.

GET_LUN

Set this keyword to use the GET_LUN procedure to set the value of Unit before the
file is opened. Instead of using the two statements:

GET_LUN, Unit
OPENR, Unit, 'data.dat'

you can use the single statement:

OPENR, Unit, 'data.dat', /GET LUN

RAWIO

Set this keyword to disable all use of the standard operating system I/O for the file, in
favor of direct calls to the operating system. This allows direct access to devices,
such as tape drives, that are difficult or impossible to use effectively through the
standard I/O. Using this keyword has the following implications:

• No formatted or associated (ASSOC) I/O is allowed on the file. Only READU
and WRITEU are allowed.

• Normally, attempting to read more data than is available from a file causes the
unfilled space to be set to zero and an error to be issued. This does not happen
SOCKET What’s New in IDL 5.4

Chapter 3: New IDL Routines 225
with files opened with RAWIO. When using RAWIO, the programmer must
check the transfer count, either via the TRANSFER_COUNT keywords to
READU and WRITEU, or the FSTAT function.

• The EOF and POINT_LUN functions cannot be used with a file opened with
RAWIO.

• Each call to READU or WRITEU maps directly to UNIX read(2) and write(2)
system calls. The programmer must read the UNIX system documentation for
these calls and documentation on the target device to determine if there are any
special rules for I/O to that device. For example, the size of data that can be
transferred to many cartridge tape drives is often forced to be a multiple of 512
bytes.

READ_TIMEOUT

Set this keyword to the number of seconds to wait for data to arrive before giving up
and issuing an error. By default, IDL blocks indefinitely until the data arrives.
Typically, this option is unnecessary on a local network, but it is useful with
networks that are slow or unreliable.

SWAP_ENDIAN

Set this keyword to swap byte ordering for multi-byte data when performing binary
I/O on the specified file. This is useful when accessing files also used by another
system with byte ordering different than that of the current host.

SWAP_IF_BIG_ENDIAN

Setting this keyword is equivalent to setting SWAP_ENDIAN; it only takes effect if
the current system has big endian byte ordering. This keyword does not refer to the
byte ordering of the input data, but to the computer hardware.

SWAP_IF_LITTLE_ENDIAN

Setting this keyword is equivalent to setting SWAP_ENDIAN; it only takes effect if
the current system has little endian byte ordering. This keyword does not refer to the
byte ordering of the input data, but to the computer hardware.

WIDTH

The desired output width. When using the defaults for formatted output, IDL uses the
following rules to determine where to break lines:

• If the output file is a terminal, the terminal width is used. Under VMS, if the
file has fixed-length records or a maximum record length, the record length is
used.
What’s New in IDL 5.4 SOCKET

226 Chapter 3: New IDL Routines
• Otherwise, a default of 80 columns is used.

The WIDTH keyword allows the user to override this default.

WRITE_TIMEOUT

Set this keyword to the number of seconds to wait to send data before giving up and
issuing an error. By default, IDL blocks indefinitely until it is possible to send the
data. Typically, this option is unnecessary on a local network, but it is useful with
networks that are slow or unreliable.

UNIX-Only Keywords

STDIO

Under UNIX, forces the file to be opened via the standard C I/O library (stdio) rather
than any other more native OS API that might usually be used. This is primarily of
interest to those who intend to access the file from external code, and is not necessary
for most uses.

Note
Under Windows, the STDIO feature is not possible. Requesting it causes IDL to
throw an error.

Example

Most UNIX systems maintain a daytime server on the daytime port (port 13). There
servers send a 1 line response when connected to, containing the current time of day.

; To obtain the current time from the host bullwinkle:
SOCKET, 1, 'bullwinkle','daytime'
date=''
READF, 1, date
CLOSE, 1
PRINT, date

IDL prints:

Wed Sep 15 17:20:27 1999
SOCKET What’s New in IDL 5.4

Chapter 3: New IDL Routines 227
SPHER_HARM

The SPHER_HARM function returns the value of the spherical harmonic Ylm(θ,φ),
–l ≤ m ≤ l, l ≥ 0, which is a function of two coordinates on a spherical surface.

The spherical harmonics are related to the associated Legendre polynomial by:

For negative m the following relation is used:

where * represents the complex conjugate.

This routine is written in the IDL language. Its source code can be found in the file
spher_harm.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = SPHER_HARM(Theta, Phi, L, M, [, /DOUBLE])

Return Value

SPHER_HARM returns a complex scalar or array containing the value of the
spherical harmonic function. The return value has the same dimensions as the input
arguments Theta and Phi. If one argument (Theta or Phi) is a scalar and the other
argument is an array, the function uses the scalar value with each element of the
array, and returns an array with the same dimensions as the input array.

If either Theta or Phi are double-precision or if the DOUBLE keyword is set, the
result is double-precision complex, otherwise the result is single-precision complex.

Arguments

Theta

The value of the polar (colatitudinal) coordinate θ at which Ylm(θ,φ) is evaluated.
Theta can be either a scalar or an array.

Y lm θ φ(,)
2l 1+

4π
-------------- l m–()!

l m+()!
-------------------Pm

l
θcos()e

imφ
=

Y 1 m–, θ φ(,) 1–()m
Y *

lm
θ φ(,)=
What’s New in IDL 5.4 SPHER_HARM

228 Chapter 3: New IDL Routines
Phi

The value of the azimuthal (longitudinal) coordinate φat which Ylm(θ,φ) is evaluated.
Phi can be either a scalar or an array.

L

A scalar integer, L ≥ 0, specifying the order l of Ylm(θ,φ). If L is of type float, it will
be truncated.

M

A scalar integer, –L ≤ M ≤ L, specifying the azimuthal order m of Ylm(θ,φ). If M is of
type float, it will be truncated.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

This example visualizes the electron probability density for the hydrogen atom in
state 3d0. (Feynman, Leighton, and Sands, 1965: The Feynman Lectures on Physics,
Calif. Inst. Tech, Ch. 19):

; Define a data cube (N x N x N)
n = 41L
a = 60*FINDGEN(n)/(n-1) - 29.999 ; [-1,+1]
x = REBIN(a, n, n, n) ; X-coordinates of cube
y = REBIN(REFORM(a,1,n), n, n, n) ; Y-coordinates
z = REBIN(REFORM(a,1,1,n), n, n, n); Z-coordinates

; Convert from rectangular (x,y,z) to spherical (phi, theta, r)
spherCoord = CV_COORD(FROM_RECT= $
 TRANSPOSE([[x[*]],[y[*]],[z[*]]]), /TO_SPHERE)
phi = REFORM(spherCoord[0,*], n, n, n)
theta = REFORM(!PI/2 - spherCoord[1,*], n, n, n)
r = REFORM(spherCoord[2,*], n, n, n)

; Find electron probability density for hydrogen atom in state 3d0
; Angular component
L = 2 ; state "d" is electron spin L=2
M = 0 ; Z-component of spin is zero
angularState = SPHER_HARM(theta, phi, L, M)
; Radial component for state n=3, L=2
radialFunction = EXP(-r/2)*(r^2)
SPHER_HARM What’s New in IDL 5.4

Chapter 3: New IDL Routines 229
waveFunction = angularState*radialFunction
probabilityDensity = ABS(waveFunction)^2

SHADE_VOLUME, probabilityDensity, $
 0.1*MEAN(probabilityDensity), vertex, poly
oPolygon = OBJ_NEW('IDLgrPolygon', vertex, $
 POLYGON=poly, COLOR=[180,180,180])
XOBJVIEW, oPolygon

The results are shown in the following figure (rotated in XOBJVIEW for clarity):

See Also

LEGENDRE, LAGUERRE

Figure 3-8: SPHER_HARM Example of Hydrogen Atom
(object rotated in XOBJVIEW for clarity)
What’s New in IDL 5.4 SPHER_HARM

230 Chapter 3: New IDL Routines
SWITCH

The SWITCH statement is used to select one statement for execution from multiple
choices, depending upon the value of the expression following the word SWITCH.

Each statement that is part of a SWITCH statement is preceded by an expression that
is compared to the value of the SWITCH expression. SWITCH executes by
comparing the SWITCH expression with each selector expression in the order
written. If a match is found, program execution jumps to that statement and execution
continues from that point. Whereas CASE executes at most one statement within the
CASE block, SWITCH executes the first matching statement and any following
statements in the SWITCH block. Once a match is found in the SWITCH block,
execution falls through to any remaining statements. For this reason, the BREAK
statement is commonly used within SWITCH statements to force an immediate exit
from the SWITCH block.

The ELSE clause of the SWITCH statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it is usually
written as the last clause in the switch statement. The ELSE statement is executed
only if none of the preceding statement expressions match. If an ELSE clause is not
included and none of the values match the selector, program execution continues
immediately below the SWITCH without executing any of the SWITCH statements.

SWITCH is similar to the CASE statement. For more information on using SWITCH
and other IDL program control statements, as well as the differences between
SWITCH and CASE, see Chapter 11, “Program Control” in Building IDL
Applications.

Syntax

SWITCH expression OF

expression: statement

...

expression: statement

ELSE: statement

ENDSWITCH
SWITCH What’s New in IDL 5.4

Chapter 3: New IDL Routines 231
Example

This example illustrates how, unlike CASE, SWITCH executes the first matching
statement and any following statements in the SWITCH block:

x=2

SWITCH x OF
1: PRINT, 'one'
2: PRINT, 'two'
3: PRINT, 'three'
4: PRINT, 'four'

ENDSWITCH

IDL Prints:

two
three
four

See Also

CASE
What’s New in IDL 5.4 SWITCH

232 Chapter 3: New IDL Routines
TIMEGEN

The TIMEGEN function returns an array, with specified dimensions, of double-
precision floating-point values that represent times in terms of Julian dates.

The Julian date is the number of days elapsed since Jan. 1, 4713 B.C.E., plus the time
expressed as a day fraction. Following the astronomical convention, the day is
defined to start at 12 PM (noon). Julian date 0.0d is therefore Jan. 1, 4713 B.C.E. at
12:00:00.

The first value of the returned array corresponds to a Julian date start time, and each
subsequent value corresponds to the next Julian date in the sequence. The sequence is
determined by specifying the time unit (such as months or seconds) and the step size,
or spacing, between the units. You can also construct more complicated arrays by
including smaller time units within each major time interval.

A small offset is added to each Julian date to eliminate roundoff errors when
calculating the day fraction from the hour, minute, second. This offset is given by the
larger of EPS and EPS*Julian, where Julian is the integer portion of the Julian date
and EPS is the double-precision floating-point precision parameter from MACHAR.
For typical Julian dates the offset is approximately 6x10-10 (which corresponds to
5x10-5 seconds). This offset ensures that when the Julian date is converted back to the
hour, minute, and second, the hour, minute, and second will have the same integer
values.

Tip
Because of the large magnitude of the Julian date (1 Jan 2000 is Julian day
2451545), the precision of most Julian dates is limited to 1 millisecond (0.001
seconds). If you are not interested in the date itself, you can improve the precision
by subtracting a large offset or setting the START keyword to zero.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000, respectively.

Syntax

Result = TIMEGEN([D1,...,D8 | , FINAL=value] [, DAYS=vector]
[, HOURS=vector] [, MINUTES=vector] [, MONTHS=vector] [, SECONDS=vector]
[, START=value] [, STEP_SIZE=value] [, UNITS=string] [, YEAR=value])
TIMEGEN What’s New in IDL 5.4

Chapter 3: New IDL Routines 233
Arguments

Di

The dimensions of the result. The dimension parameters may be any scalar
expression. Up to eight dimensions may be specified. If the dimension arguments are
not integer values, IDL will truncate them to integer values before creating the new
array. The dimension arguments are required unless keyword FINAL is set, in which
case they are ignored.

Keywords

DAYS

Set this keyword to a scalar or a vector giving the day values that should be included
within each month. This keyword is ignored if the UNITS keyword is set to “Days”,
“Hours”, “Minutes”, or “Seconds”.

Note
Day values that are beyond the end of the month will be set equal to the last day for
that month. For example, setting DAY=[31] will automatically return the last day in
each month.

FINAL

Set this keyword to a double-precision value representing the Julian date/time to use
as the last value in the returned array. In this case, the dimension arguments are
ignored and Result is a one-dimensional array, with the number of elements
depending upon the step size. The FINAL time may be less than the START time, in
which case STEP_SIZE should be negative.

Note
If the step size is not an integer then the last element may not be equal to the FINAL
time. In this case, TIMEGEN will return enough elements such that the last element
is less than or equal to FINAL.

HOURS

Set this keyword to a scalar or a vector giving the hour values that should be included
within each day. This keyword is ignored if UNITS is set to “Hours”, “Minutes”, or
“Seconds”.
What’s New in IDL 5.4 TIMEGEN

234 Chapter 3: New IDL Routines
MINUTES

Set this keyword to a scalar or a vector giving the minute values that should be
included within each hour. This keyword is ignored if UNITS is set to “Minutes” or
“Seconds”.

MONTHS

Set this keyword to a scalar or a vector giving the month values that should be
included within each year. This keyword is ignored if UNITS is set to “Months”,
“Days”, “Hours”, “Minutes”, or “Seconds”.

SECONDS

Set this keyword to a scalar or a vector giving the second values that should be
included within each minute. This keyword is ignored if UNITS is set to “Seconds”.

START

Set this keyword to a double-precision value representing the Julian date/time to use
as the first value in the returned array. The default is 0.0d [corresponding to January
1, 4713 B.C.E. at 12 pm (noon)].

Note
If subintervals are provided by MONTHS, DAYS, HOURS, MINUTES, or
SECONDS, then the first element may not be equal to the START time. In this case
the first element in the returned array will be greater than or equal to START.

Tip
Other array generation routines in IDL (such as FINDGEN) do not allow you to
specify a starting value because the resulting array can be added to a scalar
representing the start value. For TIMEGEN it is correct to add a scalar to the array
if the units are days, hours, minutes, seconds, or sub-seconds. For example:

MyTimes = TIMEGEN(365, UNITS="Days") + SYSTIME(/JULIAN)

However, if the units are months or years, the start value is necessary because the
number of days in a month or year can vary depending upon the year in which they
fall (for instance, consider leap years). For example:

MyTimes = TIMEGEN(12, UNITS="Months", START=JULDAY(1,1,2000))
TIMEGEN What’s New in IDL 5.4

Chapter 3: New IDL Routines 235
STEP_SIZE

Set this keyword to a scalar value representing the step size between the major
intervals of the returned array. The step size may be negative. The default step size is
1. When the UNITS keyword is set to “Years” or “Months”, the STEP_SIZE value is
rounded to the nearest integer.

UNITS

Set this keyword to a scalar string indicating the time units to be used for the major
intervals for the generated array. Valid values include:

• “Years” or “Y”

• “Months” or “M”

• “Days” or “D”

• “Hours” or “H”

• “Minutes” or “I”

• “Seconds” or “S”

The case (upper or lower) is ignored. If this keyword is not specified, then the default
for UNITS is the time unit that is larger than the largest keyword present:

If none of the above keywords are present, the default is UNITS=“Days”.

Largest Keyword
Present Default UNITS

SECONDS=vector “Minutes”

MINUTES=vector “Hours”

HOURS=vector “Days”

DAYS=vector “Months”

MONTHS=vector “Years”

YEAR=value “Years”

Table 3-8: Defaults for the UNITS keyword
What’s New in IDL 5.4 TIMEGEN

236 Chapter 3: New IDL Routines
YEAR

Set this keyword to a scalar giving the starting year. If YEAR is specified then the
starting year from START is ignored.

Examples

• Generate an array of 366 time values that are one day apart starting with
January 1, 2000:

MyDates = TIMEGEN(366, START=JULDAY(1,1,2000))

• Generate an array of 20 time values that are 12 hours apart starting with the
current time:

MyTimes = TIMEGEN(20, UNITS='Hours', STEP_SIZE=12, $
START=SYSTIME(/JULIAN))

• Generate an array of time values that are 1 hour apart from 1 January 2000
until the current time:

MyTimes = TIMEGEN(START=JULDAY(1,1,2000), $
FINAL=SYSTIME(/JULIAN), UNITS='Hours')

• Generate an array of time values composed of seconds, minutes, and hours that
start from the current hour:

MyTimes = TIMEGEN(60, 60, 24, $
START=FLOOR(SYSTIME(/JULIAN)*24)/24d, UNITS='S')

• Generate an array of 24 time values with monthly intervals, but with
subintervals at 5 PM on the first and fifteenth of each month:

MyTimes = TIMEGEN(24, START=FLOOR(SYSTIME(/JULIAN)), $
DAYS=[1,15], HOURS=17)

See Also

“Format Codes” in Chapter 8 of Building IDL Applications, CALDAT, JULDAY,
LABEL_DATE, SYSTIME
TIMEGEN What’s New in IDL 5.4

Chapter 3: New IDL Routines 237
WV_CWT

The WV_CWT function returns the one-dimensional continuous wavelet transform
of the input Array. The transform is done using a user-inputted wavelet function.

Syntax

Result = WV_CWT(Array, Family, Order [, /DOUBLE]
[, DSCALE=scalar] [, NSCALE=scalar] [, /PAD]
[, SCALE=variable] [, START_SCALE=scalar])

Return Value

The result is a two-dimensional array of type complex or double complex, containing
the continuous wavelet transform of the input Array.

Arguments

Array

A one-dimensional array of length N, of floating-point or complex type.

Family

A scalar string giving the name of the wavelet function to use for the transform.

Order

The order number, or parameter, for the wavelet function given by Family.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

DSCALE

Set this keyword to a scalar value giving the spacing between scale values, in
logarithmic units. The default is 0.25, which gives four subscales within each major
scale.

NSCALE

Set this keyword to a scalar value giving the total number of scale values to use for
the wavelet transform. The default is [log2(N/START_SCALE)]/DSCALE+1.
What’s New in IDL 5.4 WV_CWT

238 Chapter 3: New IDL Routines
PAD

Set this keyword to force Array to be padded with zeroes before computing the
transform. Enough zeroes are added to make the total length of Array equal to the
next-higher power-of-two greater than 2N. Padding with zeroes prevents wraparound
of the Array and speeds up the fast Fourier transform.

Note
Padding with zeroes reduces, but does not eliminate, edge effects caused by the
discontinuities at the start and end of the data.

SCALE

Set this keyword to a named variable in which to return the scale values used for the
continuous wavelet transform. The SCALE values range from START_SCALE up to
START_SCALE·2^[(NSCALE–1)DSCALE].

START_SCALE

Set this keyword to a scalar value giving the starting scale, in non-dimensional units.
The default is 2, which gives a starting scale that is twice the spacing between Array
elements.

Reference

Torrence and Compo, 1998: A Practical Guide to Wavelet Analysis. Bull. Amer.
Meteor. Soc., 79, 61–78.

See Also

WV_FN_MORLET, WV_FN_PAUL
WV_CWT What’s New in IDL 5.4

Chapter 3: New IDL Routines 239
WV_DENOISE

The WV_DENOISE function uses the wavelet transform to filter (or de-noise) a
multi-dimensional array.

WV_DENOISE computes the discrete wavelet transform of Array, and then discards
wavelet coefficients smaller than a certain threshold. WV_DENOISE then computes
the inverse wavelet transform on the filtered coefficients and returns the result.

Syntax

Result = WV_DENOISE(Array [, Family, Order]
[, COEFFICIENTS=value] [, CUTOFF=variable]
[, DENOISE_STATE=variable] [, /DOUBLE]
[, DWT_FILTERED=variable] [, PERCENT=value]
[, THRESHOLD=value] [, WPS_FILTERED=variable])

Return Value

The result is an array of the same dimensions as the input Array. If Array is double
precision or /DOUBLE is set then the result is double precision, otherwise the result
is single precision.

Arguments

Array

A one-dimensional array of length N, of floating-point or complex type.

Family

A scalar string giving the name of the wavelet function to use for the transform.

Order

The order number, or parameter, for the wavelet function given by Family. If not
specified the default for the wavelet function will be used.

Note
If you pass in a DENOISE_STATE structure, then Family and Order may be
omitted. In this case the values from DENOISE_STATE are used.
What’s New in IDL 5.4 WV_DENOISE

240 Chapter 3: New IDL Routines
Keywords

COEFFICIENTS

Set this keyword to a scalar specifying the number of wavelet coefficients to retain in
the filtered wavelet transform. This keyword is ignored if keyword PERCENT is
present.

CUTOFF

Set this keyword to a named variable that, upon return, will contain the cutoff value
of wavelet power that was used for the threshold.

DENOISE_STATE

This is both an input and an output keyword. If this keyword is set to a named
variable, then on exit, DENOISE_STATE will contain the following structure:

Note
If the DOUBLE keyword is set then the arrays will be of type double.

Upon input, if DENOISE_STATE is set to a structure with the above form, then
DWT, WPS, SORTED, and CUMULATIVE will not be recomputed by
WV_DENOISE. This is useful if you want to make multiple calls to WV_DENOISE
using the same Array.

Tag Type Definition

FAMILY STRING Name of the wavelet function used.

ORDER DOUBLE Order for the wavelet function.

DWT FLT/DBLARR Discrete wavelet transform of Array

WPS FLT/DBLARR Wavelet power spectrum, equal to |DWT|^2

SORTED FLT/DBLARR Percent-normalized WPS, sorted

CUMULATIVE FLT/DBLARR Cumulative sum of SORTED

COEFFICIENTS LONG Number of coefficients retained

PERCENT DOUBLE Percent of coefficients retained

Table 3-9: The structure tags for DENOISE_STATE.
WV_DENOISE What’s New in IDL 5.4

Chapter 3: New IDL Routines 241
Warning
No error checking is made on the input values. The values should not be modified
between calls to DENOISE_STATE.

DOUBLE

Set this keyword to force the computation to be done using double-precision
arithmetic.

DWT_FILTERED

Set this keyword to a named variable in which the filtered discrete wavelet transform
will be returned.

PERCENT

Set this keyword to a scalar specifying the percentage of cumulative power to retain.

Note
If neither COEFFICIENTS nor PERCENT is present then all of the coefficients are
retained (i.e. no filtering is done).

THRESHOLD

Set this keyword to a scalar specifying the type of threshold. The actual threshold, T,
is set using COEFFICIENTS or PERCENT. Possible values are:

Value Description

0 Hard threshold (this is the default). The hard threshold sets all
wavelet coefficients with magnitude less than or equal to T to zero.

1 Soft threshold. The soft threshold sets all DWT[i] with magnitude
less than T to zero, and also linearly reduces the magnitude of the
each retained wavelet coefficient by T: Positive coefficients are set
equal to DWT[i] – T, while negative coefficients are set equal to
DWT[i] + T.

Table 3-10: THRESHOLD Values
What’s New in IDL 5.4 WV_DENOISE

242 Chapter 3: New IDL Routines
WPS_FILTERED

Set this keyword to a named variable in which the filtered wavelet power spectrum
will be returned.

Example

Remove the noise from a 256 x 256 image:

image = dist(256) + 10*randomn(1, 256, 256)
; Keep only 100 out of 65536 coefficients:
denoise = WV_DENOISE(image, 'Daubechies', COEFF=100, $

DENOISE_STATE=denoise_state)

window, xsize=512, ysize=300
tvscl, image, 0
tvscl, denoise, 1
xyouts, [128, 384], [10, 10], ['Image', 'Filtered'], $

/device, align=0.5, charsize=2
print, 'Percent of power retained: ', denoise_state.percent

IDL prints:

Percent of power retained: 99.973450

Change to a “soft” threshold (use DENOISE_STATE to avoid re-computing):

denoise2 = WV_DENOISE(image, COEFF=100, $
DENOISE_STATE=denoise_state, THRESHOLD=1)

Figure 3-9: Example of de-noising an image.
WV_DENOISE What’s New in IDL 5.4

Chapter 3: New IDL Routines 243
WV_FN_GAUSSIAN

The WV_FN_GAUSSIAN function constructs wavelet coefficients for the Gaussian
wavelet function. In real space, the Gaussian wavelet function is proportional to the
m-th order derivative of a Gaussian, exp(–x2/2). The Gaussian second derivative, (x2–
1) exp(–x2/2), is often referred to as the Marr wavelet.

Syntax

Result = WV_FN_GAUSSIAN([Order] [, Scale, N]
[, /DOUBLE] [, FREQUENCY=variable] [, /SPATIAL] [, WAVELET=variable])

Return Value

The returned value of this function is an anonymous structure of information about
the particular wavelet.

Tag Type Definition

FAMILY STRING ‘Gaussian’

ORDER_NAME STRING ‘Derivative’

ORDER_RANGE DBLARR(3) Valid orders [first, last, default]

ORDER DOUBLE The chosen Order

DISCRETE INT 0 [0=continuous, 1=discrete]

ORTHOGONAL INT 0 [0=nonorthogonal, 1=orthogonal]

SYMMETRIC INT 1 [0=asymmetric, 1=symm.]

SUPPORT DOUBLE Infinity [Compact support width]

MOMENTS INT 1 [Number of vanishing moments]

REGULARITY DOUBLE Infinity [Number of continuous derivatives]

E_FOLDING DOUBLE SQRT(2) [Autocorrelation e-fold distance]

FOURIER_PERIOD DOUBLE Ratio of Fourier wavelength to scale

Table 3-11: The structure tags for Result.
What’s New in IDL 5.4 WV_FN_GAUSSIAN

244 Chapter 3: New IDL Routines
Arguments

Order

A scalar that specifies the non-dimensional order parameter for the wavelet. The
default is 2.

Scale

A scalar that specifies the scale at which to construct the wavelet function.

N

An integer that specifies the number of points in the wavelet function. For Fourier
space (SPATIAL=0), the frequencies are constructed following the FFT convention:

For N even: 0, 1/N, 2/N, ..., (N–2)/(2N), 1/2, –(N–2)/(2N), ..., –1/N.
For N odd: 0, 1/N, 2/N, ..., (N–1)/(2N), –(N–1)/(2N), ..., –1/N.

For real space (/SPATIAL), the spatial coordinates are –(N–1)/2...(N–1)/2.

Note
If none of the above arguments are present then the function will simply return the
Result structure using the default Order.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

FREQUENCY

Set this keyword to a named variable in which to return the frequency array used to
construct the wavelet. This variable will be undefined if SPATIAL is set.

SPATIAL

Set this keyword to return the wavelet function in real space. The default is to return
the wavelet function in Fourier space.

WAVELET

Set this keyword to a named variable in which to return the wavelet function.
WV_FN_GAUSSIAN What’s New in IDL 5.4

Chapter 3: New IDL Routines 245
Reference

Torrence and Compo, 1998: A Practical Guide to Wavelet Analysis. Bull. Amer.
Meteor. Soc., 79, 61–78.

Example

Plot the Gaussian wavelet function at scale=20:

n = 1000 ; pick a nice number of points
info = WV_FN_GAUSSIAN(2, 20, n, /SPATIAL, $

WAVELET=wavelet)
plot, wavelet

Now plot the same wavelet in Fourier space:

info = WV_FN_GAUSSIAN(2, 20, n, $
FREQUENCY=frequency, WAVELET=wave_fourier)

plot, frequency, wave_fourier, $
xrange=[-0.2,0.2], thick=2
What’s New in IDL 5.4 WV_FN_GAUSSIAN

246 Chapter 3: New IDL Routines
WV_FN_MORLET

The WV_FN_MORLET function constructs wavelet coefficients for the Morlet
wavelet function. In real space, the Morlet wavelet function consists of a complex
exponential modulated by a Gaussian envelope: π–1/4s–1/2 exp[i k x / s] exp[–
(x / s)2/2], where s is the wavelet scale, k is a non-dimensional parameter, and x is the
position.

Syntax

Result = WV_FN_MORLET([Order] [, Scale, N]
[, /DOUBLE] [, FREQUENCY=variable] [, /SPATIAL] [, WAVELET=variable])

Return Value

The returned value of this function is an anonymous structure of information about
the particular wavelet.

Tag Type Definition

FAMILY STRING ‘Morlet’

ORDER_NAME STRING ‘Parameter’

ORDER_RANGE DBLARR(3) [3, 24, 6] Valid orders [first, last, default]

ORDER DOUBLE The chosen Order

DISCRETE INT 0 [0=continuous, 1=discrete]

ORTHOGONAL INT 0 [0=nonorthogonal, 1=orthogonal]

SYMMETRIC INT 1 [0=asymmetric, 1=symm.]

SUPPORT DOUBLE Infinity [Compact support width]

MOMENTS INT 1 [Number of vanishing moments]

REGULARITY DOUBLE Infinity [Number of continuous derivatives]

E_FOLDING DOUBLE SQRT(2) [Autocorrelation e-fold distance]

FOURIER_PERIOD DOUBLE Ratio of Fourier wavelength to scale

Table 3-12: The structure tags for Result.
WV_FN_MORLET What’s New in IDL 5.4

Chapter 3: New IDL Routines 247
Arguments

Order

A scalar that specifies the non-dimensional order parameter for the wavelet. The
default is 6.

Scale

A scalar that specifies the scale at which to construct the wavelet function.

N

An integer that specifies the number of points in the wavelet function. For Fourier
space (SPATIAL=0), the frequencies are constructed following the FFT convention:

For N even: 0, 1/N, 2/N, ..., (N–2)/(2N), 1/2, –(N–2)/(2N), ..., –1/N.
For N odd: 0, 1/N, 2/N, ..., (N–1)/(2N), –(N–1)/(2N), ..., –1/N.

For real space (/SPATIAL), the spatial coordinates are –(N–1)/2...(N–1)/2.

Note
If none of the above arguments are present then the function will simply return the
Result structure using the default Order.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

FREQUENCY

Set this keyword to a named variable in which to return the frequency array used to
construct the wavelet. This variable will be undefined if SPATIAL is set.

SPATIAL

Set this keyword to return the wavelet function in real space. The default is to return
the wavelet function in Fourier space.

WAVELET

Set this keyword to a named variable in which to return the wavelet function.
What’s New in IDL 5.4 WV_FN_MORLET

248 Chapter 3: New IDL Routines
Reference

Torrence and Compo, 1998: A Practical Guide to Wavelet Analysis. Bull. Amer.
Meteor. Soc., 79, 61–78.

Example

Plot the Morlet wavelet function at scale=100:

n = 1000 ; pick a nice number of points
info = WV_FN_MORLET(6, 100, n, /SPATIAL, $

WAVELET=wavelet)
plot, float(wavelet), THICK=2
oplot, imaginary(wavelet)

Now plot the same wavelet in Fourier space:

info = WV_FN_MORLET(6, 100, n, $
FREQUENCY=frequency, WAVELET=wave_fourier)

plot, frequency, wave_fourier, $
xrange=[-0.2,0.2], thick=2
WV_FN_MORLET What’s New in IDL 5.4

Chapter 3: New IDL Routines 249
WV_FN_PAUL

The WV_FN_PAUL function constructs wavelet coefficients for the Paul wavelet
function. In real space, the Paul wavelet function is proportional to the complex
polynomial (1 – i x / s)^(–m–1), where s is the wavelet scale, m is a non-dimensional
parameter, and x is the position.

Syntax

Result = WV_FN_PAUL([Order] [, Scale, N]
[, /DOUBLE] [, FREQUENCY=variable] [, /SPATIAL] [, WAVELET=variable])

Return Value

The returned value of this function is an anonymous structure of information about
the particular wavelet.

Tag Type Definition

FAMILY STRING ‘Paul’

ORDER_NAME STRING ‘Parameter’

ORDER_RANGE DBLARR(3) [1, 20, 4] Valid orders [first, last, default]

ORDER DOUBLE The chosen Order

DISCRETE INT 0 [0=continuous, 1=discrete]

ORTHOGONAL INT 0 [0=nonorthogonal, 1=orthogonal]

SYMMETRIC INT 1 [0=asymmetric, 1=symm.]

SUPPORT DOUBLE Infinity [Compact support width]

MOMENTS INT 1 [Number of vanishing moments]

REGULARITY DOUBLE Infinity [Number of continuous derivatives]

E_FOLDING DOUBLE 1/sqrt(2) [Autocorrelation e-fold distance]

FOURIER_PERIOD DOUBLE Ratio of Fourier wavelength to scale

Table 3-13: The structure tags for Result.
What’s New in IDL 5.4 WV_FN_PAUL

250 Chapter 3: New IDL Routines
Arguments

Order

A scalar that specifies the non-dimensional order for the wavelet. The default is 4.

Scale

A scalar that specifies the scale at which to construct the wavelet function.

N

An integer that specifies the number of points in the wavelet function. For Fourier
space (SPATIAL=0), the frequencies are constructed following the FFT convention:

For N even: 0, 1/N, 2/N, ..., (N–2)/(2N), 1/2, –(N–2)/(2N), ..., –1/N.
For N odd: 0, 1/N, 2/N, ..., (N–1)/(2N), –(N–1)/(2N), ..., –1/N.

For real space (/SPATIAL), the spatial coordinates are –(N–1)/2...(N–1)/2.

Note
If none of the above arguments are present then the function will simply return the
Result structure using the default Order.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

FREQUENCY

Set this keyword to a named variable in which to return the frequency array used to
construct the wavelet. This variable will be undefined if SPATIAL is set.

SPATIAL

Set this keyword to return the wavelet function in real space. The default is to return
the wavelet function in Fourier space.

WAVELET

Set this keyword to a named variable in which to return the wavelet function.
WV_FN_PAUL What’s New in IDL 5.4

Chapter 3: New IDL Routines 251
Reference

Torrence and Compo, 1998: A Practical Guide to Wavelet Analysis. Bull. Amer.
Meteor. Soc., 79, 61–78.

Example

Plot the Paul wavelet function at scale=100:

n = 1000 ; pick a nice number of points
info = WV_FN_PAUL(6, 100, n, /SPATIAL, $

WAVELET=wavelet)
plot, float(wavelet), THICK=2
oplot, imaginary(wavelet)

Now plot the same wavelet in Fourier space:

info = WV_FN_PAUL(6, 100, n, $
FREQUENCY=frequency, WAVELET=wave_fourier)

plot, frequency, wave_fourier, $
xrange=[-0.2,0.2], thick=2
What’s New in IDL 5.4 WV_FN_PAUL

252 Chapter 3: New IDL Routines
XDXF

The XDXF procedure is a utility for displaying and interactively manipulating DXF
objects.

Syntax

XDXF [, Filename] [, /BLOCK] [, GROUP=widget_id] [, /MODAL]
[, SCALE=value] [, /TEST] [keywords to XOBJVIEW]

Arguments

Filename

A string specifying the name of the DXF file to display. If this argument is not
specified, a file selection dialog is opened.

Keywords

XDXF accepts the keywords to XOBJVIEW. In addition, XDXF supports the
following keywords:

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting the BLOCK keyword causes
all widget applications to block, not just this application. For more information, see
the documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XDXF
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

GROUP

The widget ID of the widget that calls XDXF. When this ID is specified, the death of
the caller results in the death of XDXF.
XDXF What’s New in IDL 5.4

Chapter 3: New IDL Routines 253
MODAL

Set this keyword to block processing of events from other widgets until the user quits
XDXF. A group leader must be specified (via the GROUP keyword) for the MODAL
keyword to have any effect. By default, XDXF does not block event processing.

SCALE

Set this keyword to the zoom factor for the initial view. The default is 1/SQRT(3).
This default value provides the largest possible view of the object, while ensuring
that no portion of the object will be clipped by the XDXF window, regardless of the
object’s orientation.

TEST

If this keyword is set, the file heart.dxf in the IDL distribution is automatically
opened in XDXF.

Using XDXF

XDXF displays a resizeable top-level base with a menu and draw widget used to
display and manipulate the orientation of a DXF object.

Figure 3-10: The XDXF Utility
What’s New in IDL 5.4 XDXF

254 Chapter 3: New IDL Routines
XDXF also displays a dialog that contains block and layer information and allows the
user to turn on and off the display of individual layers.

The XDXF Toolbar

The XDXF toolbar contains the following buttons:

The XDXF Information Dialog

The XDXF Information dialog displays information about the blocks and layers
contained in the currently displayed object, and allows you to turn on and off the
display of each layer.

To show or hide layers in the DXF object, select the layer from the list of layers on
the left of the dialog, and click the Show or Hide button. Alternatively, you can click
in the “Vis” field for the desired layer. To show or hide all layers, click the Show All
or Hide All buttons.

Figure 3-11: The XDXF Information Dialog

Reset: Resets rotation, scaling, and panning.

Rotate: Click the left mouse button on the object and drag to rotate.

Pan: Click the left mouse button on the object and drag to pan.

Zoom: Click the left mouse button on the object and drag to zoom in or out.

Select:
Click on the object. The name of the selected object is displayed, if
the object has a name, otherwise its class is displayed.
XDXF What’s New in IDL 5.4

Chapter 3: New IDL Routines 255
Example

Display the file heart.dxf, contained in the IDL distribution:

XDXF, FILEPATH('heart.dxf', $
SUBDIR=['examples', 'data'])

See Also

IDLffDXF
What’s New in IDL 5.4 XDXF

256 Chapter 3: New IDL Routines
XPCOLOR

The XPCOLOR procedure is a utility that allows you to adjust the value of the
current plotting color (foreground) using sliders, and store the desired color in the
global system variable, !P.COLOR.

When XPCOLOR is called from the IDL input command line, the Set Plot Color
dialog box appears. The dialog has two buttons (Done and Help) a single color
swatch window, three sliders, and a pulldown menu with the four color systems: red,
green, blue (RGB); cyan, magenta, yellow (CMY); hue, saturation, value (HSV); and
hue, lightness, and saturation (HLS).

When you have chosen the color system and adjusted the sliders to your liking, click
Done to store the color selected in the !P.COLOR system variable. Any plots
generated in IDL afterwards use the color selected as the plotting (foreground) color
until !P.COLOR is changed again.

Note
For a more flexible color editor, use the XPALETTE User Library routine.

This routine is written in the IDL language. Its source code can be found in the file
xpcolor.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XPCOLOR [, GROUP=widget_id]

Arguments

None.

Keywords

GROUP

Set this keyword to the group leader widget ID as passed to XMANAGER.
XPCOLOR What’s New in IDL 5.4

Chapter 3: New IDL Routines 257
XPLOT3D

The XPLOT3D procedure is a utility for creating and interactively manipulating 3D
plots.

This routine is written in the IDL language. Its source code can be found in the file
xplot3d.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XPLOT3D, X, Y, Z [, /BLOCK] [, COLOR=[r,g,b]] [, /DOUBLE_VIEW]
[, GROUP=widget_id] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5 | 6}]] [, /MODAL]
[, NAME=string] [, /OVERPLOT] [, SYMBOL=objref(s)] [, /TEST]
[, THICK=points{1.0 to 10.0}] [, TITLE=string] [, XRANGE=[min, max]]
[, YRANGE=[min, max]] [, ZRANGE=[min, max]] [, XTITLE=string]
[, YTITLE=string] [, ZTITLE=string]

Arguments

X

A vector of X data values.

Y

A vector of Y data values.

Z

A vector of Z data values.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting the BLOCK keyword causes
all widget applications to block, not just this application. For more information, see
the documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XPLOT3D
block, any earlier calls to XMANAGER must have been called with the
What’s New in IDL 5.4 XPLOT3D

258 Chapter 3: New IDL Routines
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

COLOR

Set this keyword to an [r, g, b] triplet specifying the color of the curve.

DOUBLE_VIEW

Set this keyword to cause XPLOT3D to set the DOUBLE property on the IDLgrView
that it uses to display the plot.

GROUP

Set this keyword to the widget ID of the widget that calls XPLOT3D. When this
keyword is specified, the death of the caller results in the death of XPLOT3D.

LINESTYLE

Set this keyword to a value indicating the line style that should be used to draw the
curve. The value can be either an integer value specifying a pre-defined line style, or
a 2-element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTYLE keyword to one of the following
integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1s or 0s in the
bitmask should be repeated. (That is, if three consecutive 0s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. The bitmask is most conveniently specified as a 16-bit hexadecimal value.
XPLOT3D What’s New in IDL 5.4

Chapter 3: New IDL Routines 259
For example, LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8 bits
off, 8 bits on, 8 bits off).

MODAL

Set this keyword to block processing of events from other widgets until the user quits
XPLOT3D. The MODAL keyword does not require a group leader to be specified. If
no group leader is specified, and the MODAL keyword is set, XPLOT3D fabricates
an invisible group leader for you.

Note
To be modal, XPLOT3D does not require that its caller specify a group leader. This
is unlike other IDL widget procedures such as XLOADCT, which, to be modal, do
require that their caller specify a group leader. These other procedures were
implemented this way to encourage the caller to create a modal widget that will be
well-behaved with respect to layering and iconizing. (See “Iconizing, Layering, and
Destroying Groups of Top-Level Bases” on page 1536 for more information.)

To provide a simple means of invoking XPLOT3D as a modal widget in
applications that contain no other widgets, XPLOT3D can be invoked as MODAL
without specifying a group leader, in which case XPLOT3D fabricates an invisible
group leader for you. For applications that contain multiple widgets, however, it is
good programming practice to supply an appropriate group leader when invoking
XPLOT3D, /MODAL. As with other IDL widget procedures with names prefixed
with “X”, specify the group leader via the GROUP keyword.

NAME

Set this keyword to a string specifying the name for the data curve being plotted. The
name is displayed on the XPLOT3D toolbar when the curve is selected with the
mouse. (To select the curve with the mouse, XPLOT3D must be in select mode. You
can put XPLOT3D in select mode by clicking on the rightmost button on the
XPLOT3D toolbar.)

OVERPLOT

Set this keyword to draw the curve in the most recently created view. The TITLE,
[XYZ]TITLE, [XYZ]RANGE, and MODAL keywords are ignored if this keyword is
set.

SYMBOL

Set this keyword to a vector containing one or more instances of the IDLgrSymbol
object class to indicate the plotting symbols to be used at each vertex of the polyline.
What’s New in IDL 5.4 XPLOT3D

260 Chapter 3: New IDL Routines
If there are more vertices than elements in SYMBOL, the elements of the SYMBOL
vector are cyclically repeated. By default, no symbols are drawn. To remove symbols
from a polyline, set SYMBOL to a scalar.

TEST

If set, the X, Y, and Z arguments are not required (and are ignored if provided). A
sinusoidal curve is displayed instead. This allows you to test code that uses
XPLOT3D without having to specify plot data.

THICK

Set this keyword to a value between 1.0 and 10.0, specifying the line thickness to be
used to draw the polyline, in points. The default is 1.0 points.

TITLE

Set this keyword to a string to appear in the XPLOT3D title bar.

XRANGE

Set this keyword to a 2-element array of the form [min, max] specifying the X-axis
range.

YRANGE

Set this keyword to a 2-element array of the form [min, max] specifying the Y-axis
range.

ZRANGE

Set this keyword to a 2-element array of the form [min, max] specifying the Z-axis
range.

XTITLE

Set this keyword to a string specifying the title for the X axis of the plot.

YTITLE

Set this keyword to a string specifying the title for the Y axis of the plot.

ZTITLE

Set this keyword to a string specifying the title for the Z axis of the plot.
XPLOT3D What’s New in IDL 5.4

Chapter 3: New IDL Routines 261
Using XPLOT3D

XPLOT3D displays a resizeable top-level base with a menu, toolbar and draw
widget, as shown in the following figure:

The XPLOT3D Toolbar

The XPLOT3D toolbar contains the following buttons:

Figure 3-12: The XPLOT3D Utility

Reset: Resets rotation, scaling, and panning.

Rotate: Click the left mouse button on the plot and drag to rotate.

Zoom: Click the left mouse button on the plot and drag to zoom in or out.

Pan: Click the left mouse button on the plot and drag to pan.
What’s New in IDL 5.4 XPLOT3D

262 Chapter 3: New IDL Routines
Projecting Data onto Plot “Walls”

To turn on or off the projection of data onto the walls of the box enclosing the 3D
plot, select All On, All Off, XY, YZ, or XZ from the View → 2D Projection menu.

Changing the Axis Type

The View → Axes menu allows you to select one of the following types of axes:

• Simple Axes — displays the X, Y, and Z axes as lines.

• Box Axes — displays the X, Y, and Z axes as planes.

• No Axes — turns off the display of axes.

Example

The following example displays two curves in XPLOT3D, using a custom plotting
symbol for one of the curves:

;Define plot data:
X = INDGEN(20)
Y1 = SIN(X/3.)
Y2 = COS(X/3.)
Z = X

;Display curve 1 in XPLOT3D:
XPLOT3D, X, Y1, Z, NAME='Curve1', THICK=2

;Define custom plotting symbols:
oOrb = OBJ_NEW('orb', COLOR=[0, 0, 255])
oOrb->Scale, .75, .1, .5
oSymbol = OBJ_NEW('IDLgrSymbol', oOrb)

;Overplot curve 2 in XPLOT3D:
XPLOT3D, X, Y2, Z, COLOR=[0,255,0], NAME='Curve2', $

SYMBOL=oSymbol, THICK=2, /OVERPLOT

Select:
Click on a curve to display the curve name (if defined with the
NAME keyword) on the XPLOT3D toolbar. If no name was defined
for the curve, “IDLGRPOLYLINE” is displayed.
XPLOT3D What’s New in IDL 5.4

Chapter 3: New IDL Routines 263
This code results in the following:

Figure 3-13: Two curves displayed in XPLOT3D
What’s New in IDL 5.4 XPLOT3D

264 Chapter 3: New IDL Routines
XROI

The XROI procedure is a utility for interactively defining regions of interest (ROIs),
and obtaining geometry and statistical data about these ROIs.

This routine is written in the IDL language. Its source code can be found in the file
xroi.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XROI [, ImageData] [, R] [, G] [, B] [, /BLOCK]
[[, /FLOATING] , GROUP=widget_ID] [, /MODAL] [, REGIONS_IN=value]
[, REGIONS_OUT=value] [, REJECTED=variable] [, RENDERER={0 | 1}]
[, ROI_COLOR=[r, g, b] or variable] [, ROI_GEOMETRY=variable]
[, ROI_SELECT_COLOR=[r, g, b] or variable] [, STATISTICS=variable]
[, TITLE=string] [, TOOLS=string/string array {valid values are 'Freehand Draw',
'Polygon Draw', and 'Selection'}]

Arguments

ImageData

ImageData is both an input and output argument. It is an array representing an 8-bit
or 24-bit image to be displayed. ImageData can be any of the following:

• [m, n] — 8-bit image

• [3, m, n] — 24-bit image

• [m, 3, n] — 24-bit image

• [m, n, 3] — 24-bit image

If ImageData is not supplied, the user will be prompted for a file via
DIALOG_PICKFILE. On output, ImageData will be set to the current image data.
(The current image data can be different than the input image data if the user
imported an image via the File → Import Image menu item.)

R, G, B

R, G, and B are arrays of bytes representing red, green, or blue color table values,
respectively. R, G, and B are both input and output arguments. On input, these values
are applied to the image if the image is 8-bit. To get the red, green, or blue color table
values for the image on output from XROI, specify a named variable for the
appropriate argument. (If the image is 24-bit, this argument will output a 256-element
XROI What’s New in IDL 5.4

Chapter 3: New IDL Routines 265
byte array containing the values given at input, or BINDGEN(256) if the argument
was undefined on input.)

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting the BLOCK keyword causes
all widget applications to block, not just this application. For more information, see
the documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XROI
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

FLOATING

Set this keyword, along with the GROUP keyword, to create a floating top-level base
widget. If the windowing system provides Z-order control, floating base widgets
appear above the base specified as their group leader. If the windowing system does
not provide Z-order control, the FLOATING keyword has no effect.

Note
Floating widgets must have a group leader. Setting this keyword without also
setting the GROUP keyword causes an error.

GROUP

Set this keyword to the widget ID of the widget that calls XROI. When this keyword
is specified, the death of the caller results in the death of XROI.

MODAL

Set this keyword to block other IDL widgets from receiving events while XROI is
active.
What’s New in IDL 5.4 XROI

266 Chapter 3: New IDL Routines
REGIONS_IN

Set this keyword to an array of IDLgrROI references. This allows you to open XROI
with ROIs already defined. This is also useful when using a loop to open multiple
images in XROI. By using the same named variable for both the REGIONS_IN and
REGIONS_OUT keywords, you can reuse the same ROIs in multiple images (see
Example 2). This keyword also accepts –1, or OBJ_NEW() (Null object) to indicate
that there are no ROIs to read in. This allows you to assign the result of a previous
REGIONS_OUT to REGIONS_IN without worrying about the case where the
previous REGIONS_OUT is undefined.

REGIONS_OUT

Set this keyword to a named variable that will contain an array of IDLgrROI
references. This keyword is assigned the null object reference if there are no ROIs
defined. By using the same named variable for both the REGIONS_IN and
REGIONS_OUT keywords, you can reuse the same ROIs in multiple images (see
Example 2).

REJECTED

Set this keyword to a named variable that will contain those REGIONS_IN that are
not in REGIONS_OUT. The objects defined in the variable specified for REJECTED
can be destroyed with a call to OBJ_DESTROY, allowing you to perform cleanup on
objects that are not required (see Example 2). This keyword is assigned the null
object reference if no REGIONS_IN are rejected by the user.

RENDERER

Set this keyword to an integer value to indicate which graphics renderer to use when
drawing objects within the window. Valid values are:

• 0 = Platform native OpenGL

• 1 = IDL’s software implementation (the default)

ROI_COLOR

This keyword is both an input and an output parameter. Set this keyword to a
3-element byte array, [r, g, b], indicating the color of ROI outlines when they are not
selected. This color will be used by XROI unless and until the color is changed by the
user via the “Unselected Outline Color” portion of the “ROI Outline Colors” dialog
(which is accessed by selecting Edit → Outline Colors). If this keyword is assigned
a named variable, that variable will be set to the current [r, g, b] value at the time that
XROI returns.
XROI What’s New in IDL 5.4

Chapter 3: New IDL Routines 267
ROI_GEOMETRY

Set this keyword to a named variable that will contain an array of anonymous
structures, one for each ROI that is valid when this routine returns. The structures
will contain the following fields:

If there are no valid regions of interest when this routine returns, ROI_GEOMETRY
will be undefined.

Note
If there are no REGIONS_IN, XROI must either be modal or must block control
flow in order for ROI_GEOMETRY to be defined upon exit from XROI.
Otherwise, XROI will return before an ROI can be defined, and ROI_GEOMETRY
will therefore be undefined.

ROI_SELECT_COLOR

This keyword is both an input and an output parameter. Set this keyword to a
3-element byte array, [r, g, b], indicating the color of ROI outlines when they are
selected. This color will be used by XROI unless and until the color is changed by the
user via the “Selected Outline Color” portion of the “ROI Outline Colors” dialog
(which is accessed by selecting Edit → Outline Colors). If this keyword is assigned
a named variable, that variable will be set to the current [r, g, b] value at the time that
XROI returns.

Field Description

area The area of the region of interest, in square pixels.

centroid The coordinates (x, y, z) of the centroid of the region
of interest, in pixels.

perimeter The perimeter of the region of interest, in pixels.

Table 3-14: Fields of the structure returned by ROI_GEOMETRY
What’s New in IDL 5.4 XROI

268 Chapter 3: New IDL Routines
STATISTICS

Set this keyword to a named variable to receive an array of anonymous structures,
one for each ROI that is valid when this routine returns. The structures will contain
the following fields:

If ImageData is 24-bit, or if there are no valid regions of interest when the routine
exits, STATISTICS will be undefined.

Note
If there are no REGIONS_IN, XROI must either be modal or must block control
flow in order for STATISTICS to be defined upon exit from XROI. Otherwise,
XROI will return before an ROI can be defined, and STATISTICS will therefore be
undefined.

TITLE

Set this keyword to a string to appear in the XROI title bar.

TOOLS

Set this keyword a string or vector of strings from the following list to indicate which
ROI manipulation tools should be supported when XROI is run:

• 'Freehand Draw' — Freehand ROI drawing. Mouse down begins a region,
mouse motion adds vertices to the region (following the path of the mouse),
mouse up finishes the region.

• 'Polygon Draw' — Polygon ROI drawing. Mouse down begins a region,
subsequent mouse clicks add vertices, double-click finishes the region.

Field Description

count Number of pixels in region.

minimum Minimum pixel value.

maximum Maximum pixel value.

mean Mean pixel value.

stddev Standard deviation of pixel values.

Table 3-15: Fields of the structure returned by STATISTICS
XROI What’s New in IDL 5.4

Chapter 3: New IDL Routines 269
• 'Selection' — ROI selection. Mouse down/up selects the nearest region. The
nearest vertex in that region is identified with a crosshair symbol.

If more than one string is specified, a series of bitmap buttons will appear at the top of
the XROI widget in the order specified (to the right of the fixed set of bitmap buttons
used for saving regions, displaying region information, copying to clipboard, and
flipping the image). If only one string is specified, no additional bitmap buttons will
appear, and the manipulation mode is implied by the given string. If this keyword is
not specified, bitmap buttons for all three manipulation tools are included on the
XROI toolbar.

Using XROI

XROI displays a top-level base with a menu, toolbar and draw widget. After defining
an ROI, the ROI Information window appears, as shown in the following figure:

As you move the mouse over an image, the x and y pixel locations are shown in the
status line on the bottom of the XROI window. For 8-bit images, the data value (z) is
also shown. If an ROI is defined, the status line also indicates the mouse position
relative to the ROI using the text “Inside”, “Outside”, “On Edge,” or “On Vertex.”

Figure 3-14: The XROI Utility
What’s New in IDL 5.4 XROI

270 Chapter 3: New IDL Routines
The XROI Toolbar

The XROI toolbar contains the following buttons:

Depending on the value of the TOOLS keyword, the XROI toolbar may also contain
the following buttons:

Importing an Image into XROI

To import an image into XROI, select File → Import Image. This opens a
DIALOG_READ_IMAGE dialog, which can be used to preview and select an image.

Changing the Image Color Table

To change the color table properties for the current image, select Edit → Image
Color Table. This opens the CW_PALETTE_EDITOR dialog, which is a compound
widget used to edit color palettes. See CW_PALETTE_EDITOR for more
information. This menu item is grayed out if the image does not have a color palette.

Save:
Opens a file selection dialog for saving the currently defined
ROIs to a save file.

Info: Opens the ROI Information window.

Copy: Copies the contents of the display area to the clipboard.

Flip:
Flips image vertically. Note that only the image is flipped;
any ROIs that have been defined do not move.

Draw
Freehand:

Click this button to draw freehand ROIs. Mouse down
begins a region, mouse motion adds vertices to the region
(following the path of the mouse), mouse up finishes the
region.

Draw
Polygon:

Click this button to draw polygon ROIs. Mouse down
begins a region, subsequent mouse clicks add vertices,
double-click finishes the region.

Select:
Click this button to select an ROI region. Clicking the image
causes a cross hairs symbol to be drawn at the nearest vertex
of the selected ROI.
XROI What’s New in IDL 5.4

Chapter 3: New IDL Routines 271
Changing the ROI Outline Colors

To change the outline colors for selected and unselected ROIs, select Edit → Outline
Colors. This opens the ROI Outline Colors dialog, which consists of two
CW_RGBSLIDER widgets for interactively adjusting the ROI outline colors. The
left widget is used to define the color for the selected ROI, and the right widget is
used to define the color of unselected ROIs. You can select the RGB, CMY, HSV, or
HLS color system from the Color System drop-down list.

Viewing ROI Information

To view geometry and statistical data about the currently selected ROI, click the Info
button or select Edit → ROI Information. This opens the ROI Information dialog,
which displays area, perimeter, number of pixels, minimum and maximum pixel
values, and standard deviation. Values for statistical information (minimum,
maximum, mean, and standard deviation) appear as “N/A” for 24-bit images.

To view a histogram for the currently selected ROI, click the Histogram button. This
opens a LIVE_PLOT dialog, which can be used to interactively control the plot
properties.

Note
The Histogram button is enabled only for 8-bit images.

Deleting an ROI

To delete an ROI, do the following:

1. Click the Info button or select Edit → ROI Information. This opens the ROI
Information dialog.

2. In the ROI Information dialog, select the ROI you wish to delete from the list
of ROIs. You can also select an ROI by clicking the Select button on the XROI
toolbar, then clicking on an ROI on the image.

3. Click the Delete ROI button.

Examples

Example 1

This example opens a single image in XROI:

image = READ_PNG(FILEPATH('mineral.png', $
SUBDIR=['examples','data']))

XROI, image
What’s New in IDL 5.4 XROI

272 Chapter 3: New IDL Routines
Example 2

This example reads 3 images from the file mr_abdomen.dcm, and calls XROI for
each image. A single list of regions is maintained, saving the user from having to
redefine regions on each image:

;Read 3 images from mr_abdomen.dcm and open each one in XROI:
FOR i=0,2 DO BEGIN

image = READ_DICOM(FILEPATH('mr_abdomen.dcm',$
SUBDIR=['examples','data']), IMAGE_INDEX=i)

XROI, image, r, g, b, REGIONS_IN=regions,$
REGIONS_OUT=regions, ROI_SELECT_COLOR=roi_select_color,$
ROI_COLOR=roi_color, REJECTED=rejected, /BLOCK

OBJ_DESTROY, rejected
ENDFOR

OBJ_DESTROY, regions

Perform the following steps:

1. Draw an ROI on the first image, then close that XROI window. Note that the
next image contains the ROI defined in the first image. This is accomplished
by setting REGIONS_IN and REGIONS_OUT to the same named variable in
the FOR loop of the above code.

2. Draw another ROI on the second image.

3. Click the Select button and select the first ROI. Then click the Info button to
open the ROI Information window, and click the Delete ROI button.

4. Close the second XROI window. Note that the third image contains the ROI
defined in the second image, but not the ROI deleted on the second image.
This example sets the REJECTED keyword to a named variable, and calls
OBJ_DESTROY on that variable. Use of the REJECTED keyword is not
necessary to prevent deleted ROIs from appearing on subsequent images, but
allows you perform cleanup on objects that are no longer required.
XROI What’s New in IDL 5.4

Chapter 3: New IDL Routines 273
XVOLUME

The XVOLUME procedure is a utility for viewing and interactively manipulating
volumes and isosurfaces.

This routine is written in the IDL language. Its source code can be found in the file
xvolume.pro in the lib/utilities subdirectory of the IDL distribution.

Tip
The XVOLUME_ROTATE and XVOLUME_WRITE_IMAGE procedures, which
can be called only after a call to XVOLUME, can be used to easily create
animations of volumes and isosurfaces displayed in XVOLUME. See
XVOLUME_ROTATE for an example.

Syntax

XVOLUME, Vol, [, /BLOCK] [, GROUP=widget_id] [, /INTERPOLATE]
[, /MODAL] [, RENDERER={0 | 1}] [, /REPLACE] [, SCALE=value] [, /TEST]
[, XSIZE=pixels] [, YSIZE=pixels]

Arguments

Vol

A 3-element array of the form [x, y, z] that specifies a data volume.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting the BLOCK keyword causes
all widget applications to block, not just this application. For more information, see
the documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XVOLUME
block, any earlier calls to XMANAGER must have been called with the
What’s New in IDL 5.4 XVOLUME

274 Chapter 3: New IDL Routines
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

GROUP

Set this keyword to the widget ID of the widget that calls XVOLUME. When this
keyword is specified, the death of the caller results in the death of XVOLUME.

INTERPOLATE

Set this keyword to indicate that trilinear interpolation is to be used when rendering
the volume and the image planes. Setting this keyword improves the quality of
images produced, at the cost of more computing time, especially when the volume
has low resolution with respect to the size of the viewing plane. Nearest neighbor
sampling is used by default.

MODAL

Set this keyword to block processing of events from other widgets until the user quits
XVOLUME. The MODAL keyword does not require a group leader to be specified.
If no group leader is specified, and the MODAL keyword is set, XVOLUME
fabricates an invisible group leader for you.

Note
To be modal, XVOLUME does not require that its caller specify a group leader.
This is unlike other IDL widget procedures such as XLOADCT, which, to be
modal, do require that their caller specify a group leader. These other procedures
were implemented this way to encourage the caller to create a modal widget that
will be well-behaved with respect to layering and iconizing. (See “Iconizing,
Layering, and Destroying Groups of Top-Level Bases” on page 1536 for more
information.)

To provide a simple means of invoking XVOLUME as a modal widget in
applications that contain no other widgets, XVOLUME can be invoked as MODAL
without specifying a group leader, in which case XVOLUME fabricates an invisible
group leader for you. For applications that contain multiple widgets, however, it is
good programming practice to supply an appropriate group leader when invoking
XVOLUME, /MODAL. As with other IDL widget procedures with names prefixed
with “X”, specify the group leader via the GROUP keyword.
XVOLUME What’s New in IDL 5.4

Chapter 3: New IDL Routines 275
RENDERER

Set this keyword to an integer value indicating which graphics renderer to use when
drawing objects within the window. Valid values are:

• 0 = Platform native OpenGL (the default)

• 1 = IDL’s software implementation

REPLACE

If this keyword is set, and there is a current instance of XVOLUME running, the
volume displayed in XVOLUME is replaced with the volume specified by Vol. For
example, display volume1 using the command

XVOLUME, volume1

To replace volume1 with volume2, you would use the command

XVOLUME, volume2, /REPLACE

SCALE

Set this keyword to the zoom factor for the initial view. The default is 1/SQRT(3).
This default value provides the largest possible view of the volume, while ensuring
that no portion of the volume will be clipped by the XVOLUME window, regardless
of the volume’s orientation.

TEST

If set, the Vol argument is not required (and is ignored if provided). A volume of
random numbers is displayed instead. This allows you to test code that uses
XVOLUME without having to specify volume data.

XSIZE

The width of the drawable area in pixels.

YSIZE

The height of the drawable area in pixels.
What’s New in IDL 5.4 XVOLUME

276 Chapter 3: New IDL Routines
Using XVOLUME

XVOLUME displays a resizeable top-level base with a toolbar, a menu, a graphical
interface for controlling volume and isosurface properties, and a draw widget for
displaying and manipulating the volume, as shown in the following figure:

The XVOLUME Toolbar

The XVOLUME toolbar contains the following buttons.

Note
If you have the Auto-Render option selected, the Rotate, Zoom, and Pan features
may be more difficult to use. For the best performance while manipulating the
orientation of a volume using these features, deselect the Auto-Render option.

Figure 3-15: The XVOLUME Utility

Reset: Resets rotation, scaling, and panning.

Rotate: Click the left mouse button on the volume and drag to rotate.
XVOLUME What’s New in IDL 5.4

Chapter 3: New IDL Routines 277
The XVOLUME Interface

The XVOLUME interface provides the following elements for controlling the display
of image planes and contours, volumes, and isosurfaces:

Image Planes and Contours

Image planes and contours allow you to visualize the values associated with the
volume or isosurface at a specified X, Y, or Z plane.

• Image Planes: Select one of the following options from the dropdown list for
each dimension to control the display of image planes:

• Off: Turns off the image plane display.

• Opaque: Displays an opaque image plane at the location specified by the
corresponding plane slider.

• Transparent: Displays a transparent image plane at the location specified
by the corresponding plane slider. The transparency value of the plane is
taken from the volume at the current location of the image plane.

• Contours: Check this option to display contours on the specified plane at the
location specified by corresponding the plane slider.

• Plane Sliders: Move these sliders to change the position of the plane in each
dimension.

Volume

• Color and Opacity: Click this button to change the color and/or opacity of the
current volume. This opens a CW_PALETTE_EDITOR dialog, which is a
compound widget used to edit color palettes. See CW_PALETTE_EDITOR
for more information.

• Auto-Render: Select this option to have rendering executed automatically
after each change you make to the volume. If Auto-Render is unchecked, you

Zoom:
Click the left mouse button on the volume and drag to zoom in or
out.

Pan: Click the left mouse button on the volume and drag to pan.

Select:
Click in the draw widget to identify the selected item. A name
identifying the selected item is displayed next to the Select button.
What’s New in IDL 5.4 XVOLUME

278 Chapter 3: New IDL Routines
must manually click the Render button to see changes you have made to the
volume. If Auto-Render is checked, the Render button will be grayed out.

• Render: Click on this button to execute rendering computations and display
the current volume. If Auto-Render is checked, this button will be grayed out.

Isosurface

An isosurface is a 3D surface on which the data values are constant along the entire
surface. Use the following elements to control the appearance of the isosurface:

• Color: Click this button to change the color system and/or values for the
current isosurface. This opens a CW_RGBSLIDER dialog, which is a
compound widget that provides a drop-down list for selecting the RGB, CMY,
HSV, or HLS color system, and three sliders for adjusting the values
associated with each color system.

• Isosurface Off: Select this option to turn off the isosurface display.

• Opaque Isosurface: Select this option to display an opaque isosurface.

• Semi-transparent Isosurface: Select this option to display a semi-transparent
isosurface.

• Level: Use this slider to adjust the threshold value of the isosurface.

Example

Create a volume and display using XVOLUME:

; Create a volume:
vol = BYTSCL(RANDOMU((SEED=0),5,5,5))
vol = CONGRID(vol, 30,30,30)

; Display volume:
XVOLUME, vol

See Also

XVOLUME_ROTATE, XVOLUME_WRITE_IMAGE, IDLgrVolume,
ISOSURFACE, SHADE_VOLUME, SLICER3, “Volume Objects” in Chapter 26 of
Using IDL.
XVOLUME What’s New in IDL 5.4

Chapter 4:

New Objects
This chapter describes IDL Objects introduced in IDL 5.4.
IDLffShape . 280
What’s New in IDL 5.4 279

280 Chapter 4: New Objects
IDLffShape

An IDLffShape object contains geometry, connectivity and attributes for graphics
primitives accessed from ESRI Shapefiles.

Superclasses

This class has no superclass.

Subclasses

This class has no subclasses.

Creation

See IDLffShape::Init

Methods

Intrinsic Methods

This class has the following methods:

• IDLffShape::AddAttribute

• IDLffShape::Cleanup

• IDLffShape::Close

• IDLffShape::DestroyEntity

• IDLffShape::GetAttributes

• IDLffShape::GetEntity

• IDLffShape::GetProperty

• IDLffShape::Init

• IDLffShape::Open

• IDLffShape::PutEntity

• IDLffShape::SetAttributes
IDLffShape What’s New in IDL 5.4

Chapter 4: New Objects 281
Overview

An ESRI Shapefile stores nontopological geometry and attribute information for the
spatial features in a data set.

A Shapefile consists of a main file (.shp), an index file (.shx), and a dBASE table
(.dbf). For example, the Shapefile “states” would have the following files:

• states.shp

• states.shx

• states.dbf

Naming Conventions for a Shapefile

All the files that comprise an ESRI Shapefile must adhere to the 8.3 filename
convention and must be lower case. The main file, index file, and dBASE file must
all have the same prefix. The prefix must start with an alphanumeric character and
can contain any alphanumeric, underscore (_), or hyphen (-). The main file suffix
must use the .shp extension, the index file the .shx extension, and the dBASE table
the .dbf extension.

Major Elements of a Shapefile

A Shapefile consists of the following elements that you can access through the
IDLffShape class:

• Entities

• Attributes

Entities

The geometry for a feature is stored as a shape comprising a set of vector coordinates
(referred to as ‘entities’). The entities in a Shapefile must all be of the same type. The
following are the possible types for entities in a Shapefile:

Shape Type Type Code

Point 1

PolyLine 3

Polygon 5

Table 4-1: Entity Types
What’s New in IDL 5.4 IDLffShape

282 Chapter 4: New Objects
When retrieving entities using the IDLffShape::GetEntity method, an IDL structure is
returned. This structure has the following fields:

MultiPoint 8

PointZ 11

PolyLineZ 13

PolygonZ 15

MultiPointZ 18

PointM 21

PolyLineM 23

PolygonM 25

MultiPointM 28

MultiPatch 31

Field Data Type

SHAPE_TYPE IDL_LONG

ISHAPE IDL_LONG

BOUNDS Double[8]

N_VERTICES IDL_LONG

VERTICES Pointer (to Vertices array)

MEASURE Pointer (to Measure array)

N_PARTS IDL_LONG

PARTS Pointer (to Parts array).

PART_TYPES Pointer (to part types)

ATTRIBUTES Pointer to attribute array.

Table 4-2: Entity Structure Field Data Types

Shape Type Type Code

Table 4-1: Entity Types (Continued)
IDLffShape What’s New in IDL 5.4

Chapter 4: New Objects 283
The following table describes each field in the structure:

Field Description

SHAPE_TYPE The entity type.

ISHAPE The identifier of the specific entity in the shape object.

BOUNDS A bounding box that specifies the range limits of the entity.
This eight element array contains the following information:

• Index 0 — X minimum value

• Index 1 — Y minimum value

• Index 2 — Z minimum value (if Z is supported by type)

• Index 3 — Measure minimum value (if measure is
supported by entity type).

• Index4 — X maximum value.

• Index5 — Y maximum value.

• Index6 — Z maximum value (if Z is supported by the
entity type).

• Index7 — Measure maximum value (if measure is
supported by entity type).

Note - If the entity is a point type, the values contained in the
bounds array are also the values of the entity.

N_VERTICES The number of vertices in the entity. If this value is one and
the entity is a POINT type (POINT, POINTM, POINTZ), the
vertices pointer will be set to NULL and the entity value will
be maintained in the BOUNDS field.

Table 4-3: Entity Structure Field Descriptions
What’s New in IDL 5.4 IDLffShape

284 Chapter 4: New Objects
VERTICES An IDL pointer that contains the vertices of the entity. This
pointer contains a double array that has one of the following
formats:

• [2, N] - If Z data is not present

• [3, N] - If Z data is present.

where N is the number of vertices. These array formats can be
passed to the polygon and polyline objects of IDL Object
Graphics.

Note - This pointer will be null if the entity is a point type,
with the values maintained in the BOUNDS array.

MEASURE If the entity has a measure value (this is dependent on the
entity type), this IDL pointer will contain a vector array of
measure values. The length of this vector is N_VERTICES.

Note - This pointer will be null if the entity is of type
POINTM, with the values contained in the BOUNDS array.

N_PARTS If the values of the entity are separated into parts, the break
points are enumerated in the parts array. This field lists the
number of parts in this entity. If this value is 0, the entity is
one part and the PARTS pointer will be NULL.

PARTS An IDL pointer that contains an array of indices into the
vertex/measure arrays. These values represent the start of each
part of the entity. The index range of each entity part is
defined by the following:

• Start = Parts[I]

• End = Parts[I+1]-1 or the end of the array

PART_TYPES This IDL pointer is only valid for entities of type MultiPatch
and defines the type of the particular part. If the entity type is
not MultiPatch, part types are assumed to be type RING
(SHPP_RING).

Note - This pointer is NULL if the entity is not type
MultiPatch.

Field Description

Table 4-3: Entity Structure Field Descriptions (Continued)
IDLffShape What’s New in IDL 5.4

Chapter 4: New Objects 285
Attributes

A Shapefile provides the ability to associate information describing each entity (a
geometric element) contained in the file. This descriptive information, called
attributes, consists of a set of named data elements for each geometric entity
contained in the file. The set of available attributes is the same for every entity
contained in a Shapefile, with each entity having it’s own set of attribute values.

An attribute consist of two components:

• A name

• A data value

The name consists of an 11 character string that is used to identify the data value. The
data value is not limited to any specific format.

The two components that form an attribute are accessed differently using the shape
object. To get the name of attributes for the specific file, the ATTRIBUTE_NAMES
keyword to the IDLffShape::GetProperty method is used. This returns a string array
that contains the names for the attributes defined for the file.

To get the attribute values for an entity, the IDLffShape::GetAttributes method is
called or the ATTRIBUTES keyword of the IDLffShape::GetEntity method is set. In
each case, the attribute values for the specified entity is returned as an anonymous
IDL structure. The numeric order of the fields in the returned structure map to the
numeric order of the attributes defined for the file. The actual format of the returned
structure is:

ATTRIBUTE_0 : VALUE,

ATTRIBUTE_1 : VALUE,

ATTRIBUTE_2 : VALUE,

...

ATTRIBUTE_<N-1> : VALUE

ATTRIBUTES If the attributes for an entity were requested, this field contains
an IDL pointer that contains a structure of attributes for the
entity. For more information on this structure, see “Attributes”
on page 285.

Field Description

Table 4-3: Entity Structure Field Descriptions (Continued)
What’s New in IDL 5.4 IDLffShape

286 Chapter 4: New Objects
To access the values in the returned structure, you can either hardcode the structure
field names or use the structure indexing feature of IDL.

Accessing Shapefiles

The following example shows how to access data in a Shapefile. This example sets
up a map to display parts of a Shapefile, opens a Shapefile, reads the entities from the
Shapefile, and then plots only the state of Colorado:

PRO ex_shapefile

DEVICE, RETAIN=2, DECOMPOSED=0
!P.BACKGROUND=255

;Define a color table
r=BYTARR(256) & g=BYTARR(256) & b=BYTARR(256)
r[0]=0 & g[0]=0 & b[0]=0 ;Definition of black
r[1]=100 & g[1]=100 & b[1]=255 ;Definition of blue
r[2]=0 & g[2]=255 & b[2]=0 ;Definition of green
r[3]=255 & g[3]=255 & b[3]=0 ;Definition of yellow
r[255]=255 & g[255]=255 & b[255]=255 ;Definition of white

TVLCT, r, g, b
black=0 & blue=1 & green=2 & yellow=3 & white=255

; Set up map to plot Shapefile on
MAP_SET, /ORTHO,45, -120, /ISOTROPIC, $
/HORIZON, E_HORIZON={FILL:1, COLOR:blue}, $
/GRID, COLOR=black, /NOBORDER

; Fill the continent boundaries:
MAP_CONTINENTS, /FILL_CONTINENTS, COLOR=green

; Overplot coastline data:
MAP_CONTINENTS, /COASTS, COLOR=black

; Show national borders:
MAP_CONTINENTS, /COUNTRIES, COLOR=black

;Open the states Shapefile in the examples directory
myshape=OBJ_NEW('IDLffShape', FILEPATH('states.shp', $

SUBDIR=['examples', 'data']))

;Get the number of entities so we can parse through them
myshape -> IDLffShape::GetProperty, N_ENTITIES=num_ent

;Parsing through the entities and only plotting the state of
;Colorado
IDLffShape What’s New in IDL 5.4

Chapter 4: New Objects 287
FOR x=1, (num_ent-1) DO BEGIN
 ;Get the Attributes for entity x
 attr = myshape -> IDLffShape::GetAttributes(x)
 ;See if 'Colorado' is in ATTRIBUTE_1 of the attributes for

;entity x
 IF attr.ATTRIBUTE_1 EQ 'Colorado' THEN BEGIN
 ;Get entity
 ent = myshape -> IDLffShape::GetEntity(x)
 ;Plot entity
 POLYFILL, (*ent.vertices)[0,*], (*ent.vertices)[1,*],
COLOR=yellow
 ;Clean-up of pointers
 myshape -> IDLffShape::DestroyEntity, ent
 ENDIF
ENDFOR

;Close the Shapefile
OBJ_DESTROY, myshape

END

This results in the following:

Figure 4-1: Example Use of Shapefiles
What’s New in IDL 5.4 IDLffShape

288 Chapter 4: New Objects
Creating New Shapefiles

To create a Shapefile, you need to create a new Shapefile object, define the entity and
attributes definitions, and then add your data to the file. For example, the following
program creates a new Shapefile (cities.shp), defines the entity type to be
“Point”, defines 2 attributes (CITY_NAME and STATE_NAME), and then adds an
entity to the new file:

PRO ex_shapefile_newfile

;Create the new shapefile and define the entity type to Point
mynewshape=OBJ_NEW('IDLffShape', FILEPATH('cities.shp', $

SUBDIR=['examples', 'data']), /UPDATE, ENTITY_TYPE=1)

;Set the attribute definitions for the new Shapefile
mynewshape->IDLffShape::AddAttribute, 'CITY_NAME', 7, 25, $

PRECISION=0
mynewshape->IDLffShape::AddAttribute, 'STAT_NAME', 7, 25, $

PRECISION=0

;Create structure for new entity
entNew = {IDL_SHAPE_ENTITY}

; Define the values for the new entity
entNew.SHAPE_TYPE = 1
entNew.ISHAPE = 1458
entNew.BOUNDS[0] = -104.87270
entNew.BOUNDS[1] = 39.768040
entNew.BOUNDS[2] = 0.00000000
entNew.BOUNDS[3] = 0.00000000
entNew.BOUNDS[4] = -104.87270
entNew.BOUNDS[5] = 39.768040
entNew.BOUNDS[6] = 0.00000000
entNew.BOUNDS[7] = 0.00000000

;Create structure for new attributes
attrNew = mynewshape ->IDLffShape::GetAttributes($
/ATTRIBUTE_STRUCTURE)

;Define the values for the new attributes
attrNew.ATTRIBUTE_0 = 'Denver'
attrNew.ATTRIBUTE_1 = 'Colorado'

;Add the new entity to new shapefile
mynewshape -> IDLffShape::PutEntity, entNew

;Add the Colorado attributes to new shapefile
mynewshape -> IDLffShape::SetAttributes, 0, attrNew
IDLffShape What’s New in IDL 5.4

Chapter 4: New Objects 289
;Close the shapefile
OBJ_DESTROY, mynewshape

END

Updating Existing Shapefiles

You can modify existing Shapefiles with the following:

• Adding new entities

• Adding new attributes (only to Shapefiles without any existing values in any
attributes)

• Modifying existing attributes

Note
You cannot modify existing entities.

For example, the following program adds an entity and attributes for the city of
Boulder to the cities.shp file we created in the previous example:

PRO ex_shapefile_modify

;Open the cities Shapefile
myshape=OBJ_NEW('IDLffShape', FILEPATH('cities.shp', $
 SUBDIR=['examples', 'data']), /UPDATE)

;Create structure for new entity
entNew = {IDL_SHAPE_ENTITY}

; Define the values for the new entity
entNew.SHAPE_TYPE = 1
entNew.ISHAPE = 1380
entNew.BOUNDS[0] = -105.25100
entNew.BOUNDS[1] = 40.026878
entNew.BOUNDS[2] = 0.00000000
entNew.BOUNDS[3] = 0.00000000
entNew.BOUNDS[4] = -105.25100
entNew.BOUNDS[5] = 40.026878
entNew.BOUNDS[6] = 0.00000000
entNew.BOUNDS[7] = 0.00000000

;Create structure for new attributes
attrNew = myshape ->IDLffShape::GetAttributes($
/ATTRIBUTE_STRUCTURE)
What’s New in IDL 5.4 IDLffShape

290 Chapter 4: New Objects
;Define the values for the new attributes
attrNew.ATTRIBUTE_0 = 'Boulder'
attrNew.ATTRIBUTE_1 = 'Colorado'

;Add the new entity to new shapefile
myshape -> IDLffShape::PutEntity, entNew

;Add the Colorado attributes to new shapefile
myshape -> IDLffShape::SetAttributes, 0, attrNew

;Close the shapefile
OBJ_DESTROY, myshape

END
IDLffShape What’s New in IDL 5.4

Chapter 4: New Objects 291
IDLffShape::AddAttribute

The IDLffShape::AddAttribute method adds an attribute definition to a Shapefile.
Adding a the attribute definition is required before adding the actual attribute data to
a file. For more information on attributes, see “Attributes” on page 285.

Note
You can only define new attributes to Shapefiles that do not have any existing
values in any attributes.

Syntax

Obj->[IDLffShape::]AddAttribute, Name, Type, Width [, PRECISION=integer]

Arguments

Name

Set to a string that contains the attribute name. Name values are limited to 11
characters. Arguments longer than 11 characters will be truncated.

Type

Set to the IDL type code that corresponds to the data type that will be stored in the
attribute. The valid types are:

Code Description

3 Longword Integer

5 Double-precision floating-point

7 String

Table 4-4: Type Code Descriptions
What’s New in IDL 5.4 IDLffShape

292 Chapter 4: New Objects
Width

Set to the width of the field for the data value of the attribute. The following table
describes the possible values depending on the defined Type:

Keywords

PRECISION

Set this keyword to the number of positions to be included after the decimal point.
The default is 8. This keyword is only valid for fields defined as double-precision
floating-point.

Example

In the following example, we add the attribute “ELEVATION” to an existing
Shapefile. Note that if the file already contains data in an attribute for any of the
entities defined in the file, this operation will fail.

PRO ex_addattr_shapefile

;Open a shapefile
myshape=OBJ_NEW('IDLffShape', FILEPATH('cities.shp', $
 SUBDIR=['examples', 'data']), /UPDATE)

;Define a new attribute for the Shapefile
myshape->IDLffShape::AddAttribute, 'ELEVATION', 3, 4, $
 PRECISION=0

;Close the shapefile
OBJ_DESTROY, myshape

END

Field Type Valid Values

Longword Integer Maximum size of the field.

Double-precision floating-point Maximum size of the field.

String Maximum length of the string.

Table 4-5: Width Values
IDLffShape What’s New in IDL 5.4

Chapter 4: New Objects 293
IDLffShape::Cleanup

The IDLffShape::Cleanup method performs all cleanup on a Shapefile object. If the
Shapefile being accessed by the object is open and the file has been modified, the
new information is written to the file if one of the following conditions is met:

• The file was opened with write permissions using the UPDATE keyword to
the IDLffShape::Open method

• It is a newly created file that has not been written previously.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you cannot
call the Cleanup method directly. There is one exception to this rule: If you write
your own subclass of this class, you can call the Cleanup method from within the
Cleanup method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLffShape::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
What’s New in IDL 5.4 IDLffShape

294 Chapter 4: New Objects
IDLffShape::Close

The IDLffShape::Close method closes a Shapefile. If the file has been modified, it is
also written to the disk if neither of the following conditions is met:

• The file was opened with write permissions using the UPDATE keyword to
the IDLffShape::Open method

• It is a newly created file that has not been written previously.

If the file has been modified and one of the previous conditions is not met, the file is
closed and the changes are not written to disk.

Syntax

Obj->[IDLffShape::]Close

Arguments

None.

Keywords

None.
IDLffShape What’s New in IDL 5.4

Chapter 4: New Objects 295
IDLffShape::DestroyEntity

The IDLffShape::DestroyEntity method frees memory associated with the entity
structure. For more information on the entity structure, see “Entities” on page 281.

Syntax

Obj->[IDLffShape::]DestroyEntity, Entity

Arguments

Entity

This argument specifies a scalar or array of entities to destroy.

Keywords

None.

Example

In the following example, all of the entities from the states.shp Shapefile are read
and then the DestroyEntity method is called to clean up all pointers:

PRO ex_shapefile

;Open the states Shapefile in the examples directory
myshape=OBJ_NEW('IDLffShape', FILEPATH('states.shp', $

SUBDIR=['examples', 'data']))

;Get the number of entities so we can parse through them
myshape -> IDLffShape::GetProperty, N_ENTITIES=num_ent

;Read all the entities
FOR x=1, (num_ent-1) DO BEGIN

;Read the entity x
ent = myshape -> IDLffShape::GetEntity(x)
;Clean-up of pointers
myshape -> IDLffShape::DestroyEntity, ent

ENDFOR

;Close the Shapefile
OBJ_DESTROY, myshape

END
What’s New in IDL 5.4 IDLffShape

296 Chapter 4: New Objects
IDLffShape::GetAttributes

The IDLffShape::GetAttributes method retrieves the attributes for the entities you
specify from a Shapefile.

Syntax

Result = Obj->[IDLffShape::]GetAttributes([Index] [, /ALL]
[, /ATTRIBUTE_STRUCTURE])

Return Value

This method returns an anonymous structure array. For more information on the
structure, see “Attributes” on page 285.

Arguments

Index

A scalar or array of longs specifying the entities for which you want to retrieve the
attributes, with 0 being the first entity in the Shapefile.

Note
If you do not specify Index and the ALL keyword is not set, the attributes for the
first entity (0) are returned.

Keywords

ALL

Set this keyword to retrieve the attributes for all entities in a Shapefile. If you set this
keyword, the Index argument is not required.

ATTRIBUTE_STUCTURE

Set this keyword to return an empty attribute structure that can then be used with the
IDLffShape::SetAttributes method to add attributes to a Shapefile.

Examples

In the first example, we retrieve the attributes associated with entity at location 0 (the
first entity in the file):

attr = myShape->getAttributes(0)
IDLffShape What’s New in IDL 5.4

Chapter 4: New Objects 297
In the next example, we retrieve the attributes associated with entities 10 through 20:

attr = myShape->getAttributes(10+indgen(11))

In the next example, we retrieve the attributes for entities 1,4, 9 and 70:

attr = myShape->getAttributes([1, 4, 9, 70])

In the next example, we retrieve all the attributes for a Shapefile:

attr = myShape->getAttributes(/ALL)
What’s New in IDL 5.4 IDLffShape

298 Chapter 4: New Objects
IDLffShape::GetEntity

The IDLffShape::GetEntity method returns the entities you specify from a Shapefile.

Syntax

Result = Obj->[IDLffShape::]GetEntity([Index] [, /ALL] [, /ATTRIBUTES])

Return Value

This method returns a type {IDL_SHAPE_ENTITY} structure array. For more
information on the structure, see “Entities” on page 281.

Note
Since an entity structure contains IDL pointers, you must free all the pointers
returned in these structures when the entity is no longer needed using the
IDLffShape::DestroyEntity method.

Note
Since entities cannot be modified in a Shapefile, an entity is read directly from the
Shapefile each time you use the IDLffShape::GetEntity method even if you have
already read that entity. If you modify the structure array returned by this method
for a given entity and then use IDLffShape::GetEntity on that same entity, the
modified data will NOT be returned, the data that is actually written in the file is
returned.

Arguments

Index

A scalar or array of longs specifying the entities for which you want to retrieve with 0
being the first entity in the Shapefile. If the ALL keyword is set, this argument is not
required. If you do not specify any entities and the ALL keyword is not set, the first
entity (0) is returned.

Keywords

ALL

Set this keyword to retrieve all entities from the Shapefile. If this keyword is set, the
Index argument is not required.
IDLffShape What’s New in IDL 5.4

Chapter 4: New Objects 299
ATTRIBUTES

Set this keyword to return the attributes in the entity structure. If not set, the
ATTRIBUTES tag in the entity structure will be a null IDL pointer.

Example

In the following example, all of the entities from the states.shp Shapefile are read:

PRO ex_shapefile

;Open the states Shapefile in the examples directory
myshape=OBJ_NEW('IDLffShape', FILEPATH('states.shp', $

SUBDIR=['examples', 'data']))

;Get the number of entities so we can parse through them
myshape -> IDLffShape::GetProperty, N_ENTITIES=num_ent

;Read all the entities
FOR x=1, (num_ent-1) DO BEGIN

;Read the entity x
ent = myshape -> IDLffShape::GetEntity(x)
;Clean-up of pointers
myshape -> IDLffShape::DestroyEntity, ent

ENDFOR

;Close the Shapefile
OBJ_DESTROY, myshape

END
What’s New in IDL 5.4 IDLffShape

300 Chapter 4: New Objects
IDLffShape::GetProperty

The IDLffShape::GetProperty method returns the values of properties associated with
a Shapefile object. These properties are:

• Number of entities

• The type of the entities

• The number of attributes associated with each entity

• The names of the attributes

• The name, type, width, and precision of the attributes

• The status of a Shapefile

• The filename of the Shapefile object

Syntax

Obj->[IDLffShape::]GetProperty [, N_ENTITIES=variable]
[, ENTITY_TYPE=variable] [, N_ATTRIBUTES=variable]
[, ATTRIBUTE_NAMES=variable] [, ATTRIBUTE_INFO=variable]
[, IS_OPEN=variable] [, FILENAME=variable]

Arguments

None.

Keywords

N_ENTITIES

Set this keyword to a named variable to return the number of entities contained in
Shapefile object. If the value is unknown, this method returns 0.

ENTITY_TYPE

Set this keyword to a named variable to return the integer type code for the entities
contained in the Shapefile object. If the value is unknown, this method returns -1. For
more information on entity type codes, see “Entities” on page 281.

N_ATTRIBUTES

Set this keyword to a named variable to return the number of attributes associated
with a Shapefile object. If the value is unknown, this method returns 0.
IDLffShape What’s New in IDL 5.4

Chapter 4: New Objects 301
ATTRIBUTE_NAMES

Set this keyword to a named variable to return the names of each attribute in the
Shapefile object. These names are returned as a string array.

ATTRIBUTE_INFO

Set this keyword to a named variable to return the attribute information for each
attribute. This consists of an array of attribute information structures that have the
following fields:

The file must be open to obtain this information.

IS_OPEN

Set this keyword to a named variable to return information about the status of a
Shapefile. The following values can be returned:

FILENAME

Set this keyword to a named variable to return the fully qualified path name of the
Shapefile in the current Shapefile object.

Field Description

NAME A string that contains the name of the attribute.

TYPE The IDL type code of the attribute.

WIDTH The width of the attribute.

PRECISION The precision of the attribute.

Table 4-6: ATTRIBUTE_INFO Fields

Value Description

0 File is not open

1 File is open in read-only mode.

3 File is open in update mode.

Table 4-7: IS_OPEN Values
What’s New in IDL 5.4 IDLffShape

302 Chapter 4: New Objects
Examples

In the following example, the number of entities and the entity type is returned:

PRO entity_info
;Open the states Shapefile in the examples directory
myshape=OBJ_NEW('IDLffShape', FILEPATH('states.shp', $

SUBDIR=['examples', 'data']))

;Get the number of entities and the entity type
myshape -> IDLffShape::GetProperty, N_ENTITIES=num_ent, $

ENTITY_TYPE=ent_type

;Print the number of entities and the type
PRINT, 'Number of Entities: ', num_ent
PRINT, 'Entity Type: ', ent_type

;Close the Shapefile
OBJ_DESTROY, myshape

END

This results in the following:

Number of Entities: 51
Entity Type: 5

In the next example, the definitions for attribute 1 are returned:

PRO attribute_info
;Open the states Shapefile in the examples directory
myshape=OBJ_NEW('IDLffShape', FILEPATH('states.shp', $

SUBDIR=['examples', 'data']))

;Get the info for all attribute
myshape -> IDLffShape::GetProperty, ATTRIBUTE_INFO=attr_info

;Print Attribute Info
PRINT, 'Attribute Number: ', '1'
PRINT, 'Attribute Name: ', attr_info[1].name
PRINT, 'Attribute Type: ', attr_info[1].type
PRINT, 'Attribute Width: ', attr_info[1].width
PRINT, 'Attribute Precision: ', attr_info[1].precision

;Close the Shapefile
OBJ_DESTROY, myshape

END
IDLffShape What’s New in IDL 5.4

Chapter 4: New Objects 303
This results in the following:

Attribute Number: 1
Attribute Name: STATE_NAME
Attribute Type: 7
Attribute Width: 25
Attribute Precision: 0
What’s New in IDL 5.4 IDLffShape

304 Chapter 4: New Objects
IDLffShape::Init

The IDLffShape::Init function method initializes or constructs a Shapefile object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result = OBJ_NEW(‘IDLffShape’ [, Filename] [, /UPDATE]
[, ENTITY_TYPE=’Value’)

Return Value

This method returns a Shapefile object.

Arguments

Filename

Set this argument to a scalar string containing the full path and filename of a
Shapefile (.shp) to open. If this file exists, it is opened. If the file does not exist, a
new Shapefile object is constructed. You do not need to use IDLffShape::Open to
open an existing file when specifying this keyword.

Note
The .shp, .shx, and .dbx files must exist in the same directory for you to be able
to open and access the file unless the UPDATE keyword is set.

Keywords

UPDATE

Set this keyword to have the file opened for writing. The default is read-only.
IDLffShape What’s New in IDL 5.4

Chapter 4: New Objects 305
ENTITY_TYPE

Set this keyword to the entity type of a new Shapefile. Use this keyword only when
creating a new Shapefile. For more information on entity types, see “Entities” on
page 281.

Example

In the following example, we create a new Shapefile object and open the
examples/data/states.shp file:

myshape=OBJ_NEW('IDLffShape', FILEPATH('states.shp', $
 SUBDIR=['examples', 'data']))
What’s New in IDL 5.4 IDLffShape

306 Chapter 4: New Objects
IDLffShape::Open

The IDLffShape::Open method opens a specified Shapefile.

Syntax

Result = Obj->[IDLffShape::]Open(‘Filename’ [, /UPDATE]
[, ENTITY_TYPE=’value’])

Return Value

This method returns 1 if the file can be read successfully. If not able to open the file,
it returns 0.

Arguments

Filename

Set this argument to a scalar string containing the full path and filename of a
Shapefile (.shp) to open. Note that the .shp, .shx, and .dbx files must exist in the
same directory for you to be able to open and access the file unless the UPDATE
keyword is set.

Keywords

UPDATE

Set this keyword to have the file opened for writing. The default is read-only.

ENTITY_TYPE

Set this keyword to the entity type of a new Shapefile. Use this keyword only when
creating a new Shapefile. For more information on entity types, see “Entities” on
page 281

Example

In the following example, the file examples/data/states.shp is opened for
reading and writing:

status = myShape->Open(FILEPATH('states.shp', $
 SUBDIR=['examples', 'data']), /UPDATE)
IDLffShape What’s New in IDL 5.4

Chapter 4: New Objects 307
IDLffShape::PutEntity

The IDLffShape::PutEntity method inserts an entity into the Shapefile object. The
entity must be in the proper structure. For more information on the structure, see
“Entities” on page 281.

Note
The shape type of the new entity must be the same as the shape type defined for the
Shapefile. If the shape type has not been defined for the Shapefile using the
ENTITY_TYPE keyword for the IDLffShape::Open or IDLffShape::Init methods,
the first entity that is inserted into the Shapefile defines the type.

Note
Only new entities can be inserted into a Shapefile. Existing entities cannot be
updated.

Syntax

Obj->[IDLffShape::]PutEntity, Data

Arguments

Data

Set this argument to a scalar or an array of entity structures.

Keywords

None.

Example

In the following example, we create a new shapefile, define a new entity, and then
use the PutEntity method to insert it into the new file:

PRO ex_shapefile_newfile

;Create the new shapefile and define the entity type to Point
mynewshape=OBJ_NEW('IDLffShape', FILEPATH('cities.shp', $

SUBDIR=['examples', 'data']), /UPDATE, ENTITY_TYPE=1)
What’s New in IDL 5.4 IDLffShape

308 Chapter 4: New Objects
;Create structure for new entity
entNew = {IDL_SHAPE_ENTITY}

; Define the values for the new entity
entNew.SHAPE_TYPE = 1
entNew.ISHAPE = 1458
entNew.BOUNDS[0] = -104.87270
entNew.BOUNDS[1] = 39.768040
entNew.BOUNDS[2] = 0.00000000
entNew.BOUNDS[3] = 0.00000000
entNew.BOUNDS[4] = -104.87270
entNew.BOUNDS[5] = 39.768040
entNew.BOUNDS[6] = 0.00000000
entNew.BOUNDS[7] = 0.00000000

;Add the new entity to new shapefile
mynewshape -> IDLffShape::PutEntity, entNew

;Close the shapefile
OBJ_DESTROY, mynewshape

END
IDLffShape What’s New in IDL 5.4

Chapter 4: New Objects 309
IDLffShape::SetAttributes

The IDLffShape::SetAttributes method sets the attributes for a specified entity in a
Shapefile object.

Syntax

Obj->[IDLffShape::]SetAttributes, Index, Attribute_Num, Value

or

Obj->[IDLffShape::]SetAttributes, Index, Attributes

Arguments

Index

A scalar specifying the entity in which you want to set the attributes. The first entity
in the Shapefile object is 0.

Attribute_Num

The field number for the attribute whose value is being set. This value is 0-based.

Value

The value that the attribute is being set to. If the value is not of the correct type, type
conversion is attempted.

If Value is an array and Index is a scalar, the value of record is treated as a starting
point. Using this feature, all the attribute values of a specific field can be set for a
Shapefile.

Attributes

An Attribute structure whose fields match the fields in the attribute table. If Attributes
is an array, the entities specified in Index, up to the size of the Attributes array, are
set. Using this feature, all the attribute values of a set of entities can be set for a
Shapefile.

The type of this Attribute structure must match the type that is generated internally
for Attribute table. To get a copy of this structure, either get the attribute set for an
entity or get the definition using the ATTRIBUTE_STRUCTURE keyword of the
IDLffShape::GetProperty method.
What’s New in IDL 5.4 IDLffShape

310 Chapter 4: New Objects
Keywords

None.

Example

In the following example, we create a new shapefile, define the attributes for the new
file, define a new entity, define some attributes, insert the new entity, and then use the
SetAttributes method to insert the attributes into the new file:

PRO ex_shapefile_newfile

;Create the new shapefile and define the entity type to Point
mynewshape=OBJ_NEW('IDLffShape', FILEPATH('cities.shp', $

SUBDIR=['examples', 'data']), /UPDATE, ENTITY_TYPE=1)

;Set the attribute definitions for the new Shapefile
mynewshape->IDLffShape::AddAttribute, 'CITY_NAME', 7, 25, $

PRECISION=0
mynewshape->IDLffShape::AddAttribute, 'STAT_NAME', 7, 25, $

PRECISION=0

;Create structure for new entity
entNew = {IDL_SHAPE_ENTITY}

; Define the values for the new entity
entNew.SHAPE_TYPE = 1
entNew.ISHAPE = 1458
entNew.BOUNDS[0] = -104.87270
entNew.BOUNDS[1] = 39.768040
entNew.BOUNDS[2] = 0.00000000
entNew.BOUNDS[3] = 0.00000000
entNew.BOUNDS[4] = -104.87270
entNew.BOUNDS[5] = 39.768040
entNew.BOUNDS[6] = 0.00000000
entNew.BOUNDS[7] = 0.00000000

;Create structure for new attributes
attrNew = mynewshape ->IDLffShape::GetAttributes($
/ATTRIBUTE_STRUCTURE)

;Define the values for the new attributes
attrNew.ATTRIBUTE_0 = 'Denver'
attrNew.ATTRIBUTE_1 = 'Colorado'

;Add the new entity to new shapefile
mynewshape -> IDLffShape::PutEntity, entNew
IDLffShape What’s New in IDL 5.4

Chapter 4: New Objects 311
;Add the Colorado attributes to new shapefile
mynewshape -> IDLffShape::SetAttributes, 0, attrNew

;Close the shapefile
OBJ_DESTROY, mynewshape

END
What’s New in IDL 5.4 IDLffShape

312 Chapter 4: New Objects
IDLffShape What’s New in IDL 5.4

Index

Symbols
!MAKE_DLL system variable, 196
!P.COLOR system variable, 256

Numerics
3D plots

viewing, 257
64-bit memory support, 32

A
Altivec support, 38
always on top, 49
animation

XVOLUME, 273

ANNOTATE routine, 41
ARRAY_EQUAL function, 158
arrays

comparing to scalars, 158
comparing values, 158
multiplying transposed arrays, 35
testing equality, 35

ASSOC enhancements, 33
associated variables

opening compressed files, 33
attributes

adding to a Shapefile, 291
of a Shapefile, 285

axes
changing type, 262
date/time data, 141
multiple-level date/time, 142
reverse plotting, 15
What’s New in IDL 5.4 313

314
azimuth
mapping points, 22, 201

B
backprojection

Hough inverse transform, 18, 179
Radon inverse transform, 19, 210

BESELK function, 159
Bessel functions

BESELK, 159
enhancements, 23

big endian byte order, 225
BREAK statement, 161
byte order, 225

C
calendar dates in Julian, 136
CALL_EXTERNAL

intermediate glue code, 36
changing access permissions, 164
changing modes on all platforms, 164
chmod, 164
closing

Shapefiles, 294
COLORMAP_APPLICABLE function, 162
comparing array values, 158
compressed files

opening, 33
CONTINUE statement, 163
continuous wavelet transform, 237
contours

displaying date/time data, 143, 152
number of levels, 13

curve-fitting routines
LINFIT, 24
LMFIT, 24
POLY_FIT, 26
REGRESS, 27

SVDFIT, 29

D
date/time

contour plots use, 143
data generation, 138
displaying in direct graphics, 140
displaying in object graphics, 148
double-precision versus Julian, 137
generate using TIMEGEN, 138
keywords versus system variables, 146
plotting, 12
precision, 137
using system variables, 145

deleting
files or directories, 168
region of interest, 271

denoising
WV_DENOISE function, 239

DIALOG_PICKFILE enhancements, 57
DIALOG_READ_IMAGE routine, 41
DIALOG_WRITE_IMAGE routine, 41
digital smoothing polynomial, 219
directories

changing permissions, 164
creating, 172
deleting, 168
expanding pathnames, 170
making, 172
searching for files, 177

displaying
date/time data on contours, 144, 152
date/time data on plots, 141
date/time with system variables, 145

distance
between points, 201

DLM
building sharable libraries, 192

double-precision support
IBETA, 22
Index What’s New in IDL 5.4

315
IGAMMA, 22
introduction, 8
objects, 10
routines, 10
system variables, 9
utilities, 11

DXF object
displaying, 252
manipulation, 252

dynamic memory
usage, 207

dynamically loadable modules. See DLM

E
Encapsulated PostScript

preview, 13
endian

big, 225
little, 225

entities
inserting into a Shapefile, 307
retrieving from a Shapefile, 298

entity, in a Shapefile, 281
EPS file

preview, 13
ESRI Shapefiles, 43
expanding pathnames, 170

F
FACTORIAL function

input enhancements, 24
fast Fourier transform. See FFT.
FFT

performance improvement, 17
file handling routines, 34
file status attributes, 34
FILE_CHMOD procedure, 164
FILE_DELETE procedure, 168

FILE_EXPAND_PATH function, 170
FILE_MKDIR procedure, 172
FILE_TEST function, 173
FILE_WHICH function, 177
files

changing permissions, 164
deleting, 168
expanding pathnames, 170
protection classes, 164
searching directories, 177

foreground color, 256

G
Gaussian, see wavelet functions
GIF support, 41
great circle, 22, 201

H
histogram

view of ROI, 271
histograms

number of bins, 24
Hough

backprojection, 179
transform, 179

HOUGH function, 179

I
IDL Insight, 42
IDL Projects enhancements, 46
IDL Wavelet Toolkit, 59
IDLanROI vertices, 23
IDLffShape

AddAttribute method, 291
class, 280
Cleanup method, 293
Close method, 294
What’s New in IDL 5.4 Index

316
DestroyEntity method, 295
GetAttributes method, 296
GetEntity method, 298
GetProperty method, 300
Init method, 304
Open method, 306
PutEntity method, 307
SetAttributes method, 309

importing preferences, 48
Internet socket support, 223

J
Julian date definition, 232
Julian dates/time

CALDAT conversion, 138
calendar conversion, 136
displaying using LABEL_DATE, 140
generating, 232
IDL use, 136
precision using MACHAR, 137

K
keywords, new and updated, 67

L
LAGUERRE function, 187
Laguerre polynomials, 21, 187
large file support

Windows platform, 31
least squares filtering, 21
LEGENDRE function, 189
Legendre polynomials, 21, 189
library updates, 43
license management utilities, 54
licensing wizard, 54
LINFIT enhancements, 24

linking
C code with IDL, 192
dynamically, 192

little endian byte order, 225
LIVE_EXPORT routine, 42
LMFIT enhancements, 24
logical unit number

SOCKET procedure, 224
LUN

TCP/IP socket, 223
LZW support, 41

M
Macintosh platform

Altivec support, 38
changing file permissions, 164
Error Window, 49

macros
importing from previous releases, 48

main window preferences
Macintosh platform, 53

MAKE_DLL procedure, 192
MAP_2POINTS function, 201
mapping

points on a sphere, 22
Marr, see WV_FN_GAUSSIAN
matrices

MATRIX_MULTIPLY, 205
MATRIX_MULTIPLY function, 205
MEMORY function, 207
minimum curvature surface interpolation, 23
Morlet, see wavelet functions
MPEG movie enhancements, 44
multiplication of matrices, 205

O
object class enhancements, 66
object method enhancements, 66
Index What’s New in IDL 5.4

317
obsolete routines, 128
obsoleted features, 128
ONLINE_HELP enhancements, 58
opening

Shapefiles, 306

P
Paul, see wavelet functions
platforms supported, 134
plots

viewing in 3D, 257
plotting

color, 256
contour levels, 13
displaying date/time data, 140
Julian dates/time, 136
multiple-level date/time axes, 142
reverse axis, 15

PNG file order, 44
point values in patterns, 16
POLY_FIT enhancements, 26
polynomials

digital smoothing, 21, 219
Laguerre, 21, 187
least-squares fit, 219
Legendre, 21, 189

PostScript
preview, 13

previewing PostScript files, 13
printer

support on UNIX, 14
printf format support, 39
probability functions

enhancements, 23
program control statements, 36
projections

3D plots on walls, 262

Q
QUERY_GIF routine, 41
QUERY_IMAGE routine, 41
QUEUE startup switch, 55
quoted string format code, 39

R
Radon backprojection, 210
RADON function, 210
Radon transform, 210
READ_GIF procedure, 41
READ_IMAGE routine, 41
READ_PNG routine, 41
READ_TIFF routine, 41
reading

GIF files, 41
region of interest

XROI, 264
REGRESS enhancements, 27
RESOLVE_ROUTINE enhancements, 36
retrieving

attributes of a Shapefile, 296
reverse axis plotting, 15
rhumb line, 22, 201
ROI

deleting, 271
geometric and statistical data, 264
histogram view, 271

routine enhancements, 88
routines obsoleted, 128

S
SAVGOL function, 219
Savitzky-Golay smoothing filter, 21, 219
Shapefile

adding attributes, 291
attribute structure, 285
attributes, 285
What’s New in IDL 5.4 Index

318
closing, 294
entity, 281
entity structure, 282
included files, 281
inserting entities, 307
naming conventions, 281
object properties, 300
opening, 306
retrieving attributes, 296
retrieving entities, 298
setting attributes, 309

Shapefile object, 43
sharable library

building, 192
SOCKET procedure, 223
SPAWN enhancements, 37
SPHER_HARM function, 227
spherical harmonic

relation to Legendre polynomial, 227
See also Legendre polynomials

startup switch option, 55
structures

concatenation and assignment, 38
supported platforms, 134
SVDFIT enhancements, 29
SWITCH statement, 230
system time conversion, 34
system variable enhancements, 126
system variables

!P.COLOR, 256

T
TCP/IP client side socket support, 37, 223
TIFF support, 41
TIMEGEN function, 232
transforms

FFT improvements, 17
Hough, 18, 179
Hough inverse, 18
Radon, 18, 210

Radon backprojection, 19
TRIGRID

irregularly spaced rectangular output grids,
23

U
UNIX platform

changing file permissions, 164
licensing Wizard, 54

utility enhancements, 62

W
wavelet functions

built-in
Gaussian, 243
Morlet, 246
Paul, 249

Wavelet Toolkit enhancements, 59
wavelet transform

continuous, 237
Windows Metafile Format, 14
Windows platform

always on top, 49
changing file permissions, 164
large file support, 31
licensing wizard, 54

WMF. See Windows Metafile Format.
WRITE_GIF procedure, 41
WRITE_IMAGE routine, 41
WRITE_TIFF routine, 41
writing

GIF files, 41
WV_CWT function, 237
WV_DENOISE function, 239
WV_FN_GAUSSIAN function, 243
WV_FN_MORLET function, 246
WV_FN_PAUL function, 249
Index What’s New in IDL 5.4

319
X
XDXF procedure, 252
XPCOLOR procedure, 256
XPLOT3D procedure, 257

XROI
importing images, 270

XROI procedure, 264
XVOLUME procedure, 273
What’s New in IDL 5.4 Index

320
Index What’s New in IDL 5.4

	Online Guide
	Contents
	Overview of New Features in IDL 5.4
	Visualization Enhancements in IDL
	New Visualization Utilities
	Double-Precision Support for Visualization
	IDL System Variables Now Supporting Double Precision
	IDL Routines Now Supporting Double Precision
	IDL Objects Now Supporting Double Precision
	IDL Utilities Now Supporting Double Precision

	Enhanced Date/Time Support for Plotting in IDL
	Elimination of Limits on the Number of Contour Levels
	Improved Preview Functionality for PostScript Files
	New Printer Support for UNIX Platforms
	Windows Metafile Format (WMF) Support for Direct Graphics
	New Reverse Axis Plotting Example for Object Graphics
	Ability to Specify Values in Points for the IDLgrPattern Object

	Analysis Enhancements in IDL 5.4
	Improved FFT Performance
	New Hough and Radon Transform Functions
	New Legendre Polynomial Functions
	New Laguerre Polynomial Function
	New Savitzky-Golay Smoothing Filter
	New MAP_2POINTS Function
	Enhanced IBETA and IGAMMA Functions
	Enhanced ROBERTS and SOBEL Functions
	Enhancement to Bessel Functions
	Ability to Retrieve the Number of Vertices in IDLanROI
	Enhanced MIN_CURVE_SURF Function
	Enhanced Probability Functions
	Enhanced TRIGRID Function
	Enhanced Integration Functions
	Enhanced FACTORIAL Function
	Enhanced HISTOGRAM Function
	Enhanced Curve-Fitting Functions
	LINFIT
	LMFIT
	POLY_FIT
	POLYFITW
	REGRESS
	SVDFIT

	IDL Language Enhancements
	Large File Support for Windows Platforms
	New 64-Bit Memory Support
	Platforms that Support 64-Bit IDL

	New Support for Reading Compressed Files with Associated Variables
	New File Handling Routines
	New Date Attributes for Retrieving File Status
	New Support for Converting System Times
	Improvements for Formatted Input Using READ and READF
	New Function for Testing Equality of Arrays
	New Function for Multiplying Transposed Arrays
	New Program Control Statements
	Enhanced RESOLVE_ROUTINE Function
	CALL_EXTERNAL Enhancement to Automatically Write and Compile Intermediate Glue Code on the Fly
	Enhanced Ability for Spawning Processes
	New Support for TCP/IP Client Side Sockets
	New Altivec Support for Macintosh
	Relaxed Rules for Combining Structures
	New C printf-Style Quoted String Format Code
	Enhanced WHERE Function

	LZW/GIF No Longer Supported in IDL
	File I/O Enhancements
	New Support for ESRI Shapefiles
	Improved Performance with the READ_ASCII Function
	Library Updates
	Enhanced READ_PNG and WRITE_PNG Functions
	Enhancements to the Quality of MPEG Movies
	Windows Input/Output Behavior Improved

	Development Environment Enhancements
	Improved IDL Projects
	Importing IDL Preferences & Macros from Previous Releases
	New Preferences for Windows Always on Top for the IDLDE
	New Error Window for Macintosh
	New Editor Window on Macintosh
	Multiple Panes in the Editor Window
	The Breakpoint Column
	The Line Box
	Function Drop Down List

	Running With Breakpoints in the Macintosh Editor Window
	Improved General Preferences Dialog Box
	Auto Complete Command Line
	Save Breakpoints on Quit

	Installation and Licensing Enhancements
	New Licensing Wizard
	Improved Floating License Management Utilities
	New QUEUE Startup Command Line Option

	Application Development Enhancements
	Modifications to the DIALOG_PICKFILE Function
	Additional Support for Calling Online Help from Your Application

	IDL Wavelet Toolkit Enhancements
	New Functions
	New and Updated Keywords/Arguments

	New and Enhanced IDL Utilities
	New and Existing IDL Utilities
	New Keywords/Arguments to Existing IDL Utilities

	New and Enhanced IDL Objects
	New Object Classes
	New Object Methods
	New and Updated Keywords/Arguments to IDL Object Methods

	New and Enhanced IDL Routines
	New IDL Routines
	New and Updated Keywords/Arguments to IDL Routines
	Updated Common Graphics Keywords

	New and Updated System Variables
	Features Obsoleted in IDL 5.4
	Obsoleted Routines
	Obsoleted Keywords and Arguments

	Platforms Supported in this Release

	Date/Time Plotting in IDL
	Overview
	Julian Dates and Times
	Precision of Date/Time Data

	How to Generate Date/Time Data
	Displaying Date/Time Data on an Axis in Direct Graphics
	Displaying Date/Time Data on a Plot Display
	Displaying Date/Time Data on a Contour Display
	Using System Variables to Display Date/Time Data

	Displaying Date/Time Data on an Axis in Object Graphics
	Displaying Date/Time Data on a Plot Display
	Displaying Date/Time Data on a Contour Display

	New IDL Routines
	ARRAY_EQUAL
	Op1, Op2
	NO_TYPECONV

	BESELK
	X
	N

	BREAK
	COLORMAP_APPLICABLE
	redrawRequired

	CONTINUE
	FILE_CHMOD
	File
	Mode
	A_EXECUTE
	A_READ
	A_WRITE
	G_EXECUTE
	G_READ
	G_WRITE
	O_EXECUTE
	O_READ
	O_WRITE
	U_EXECUTE
	U_READ
	U_WRITE
	SETGID
	SETUID
	STICKY_BIT

	FILE_DELETE
	FileN
	QUIET

	FILE_EXPAND_PATH
	Path

	FILE_MKDIR
	FileN

	FILE_TEST
	File
	DIRECTORY
	EXECUTABLE
	GET_MODE
	READ
	REGULAR
	WRITE
	ZERO_LENGTH
	BLOCK_SPECIAL
	CHARACTER_SPECIAL
	DANGLING_SYMLINK
	NAMED_PIPE
	SETGID
	SETUID
	SOCKET
	STICKY_BIT
	SYMLINK
	GROUP
	USER

	FILE_WHICH
	Path
	File
	INCLUDE_CURRENT_DIR

	HOUGH
	Syntax
	How IDL Implements the Hough Transform
	How IDL Implements the Hough Backprojection
	Array
	BACKPROJECT
	DOUBLE
	DRHO
	DX
	DY
	GRAY
	NRHO
	NTHETA
	NX
	NY
	RHO
	RMIN
	THETA
	XMIN
	YMIN

	LAGUERRE
	X
	N
	K
	COEFFICIENTS
	DOUBLE

	LEGENDRE
	X
	L
	M
	DOUBLE
	Example 1
	Example 2

	MAKE_DLL
	InputFiles
	OutputFile
	ExportedRoutineNames
	CC
	COMPILE_DIRECTORY
	DLL_PATH
	EXPORTED_DATA
	EXTRA_CFLAGS
	EXTRA_LFLAGS
	INPUT_DIRECTORY
	LD
	NOCLEANUP
	OUTPUT_DIRECTORY
	SHOW_ALL_OUTPUT
	VERBOSE
	VAX_FLOAT
	!MAKE_DLL System Variable
	Testmodule DLM
	Using GCC

	MAP_2POINTS
	Lon0, Lat0
	Lon1, Lat1
	DPATH
	METERS
	MILES
	NPATH
	PARAMETERS
	RADIANS
	RADIUS
	RHUMB
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	MATRIX_MULTIPLY
	A
	B
	ATRANSPOSE
	BTRANSPOSE

	MEMORY
	CURRENT
	HIGHWATER
	L64
	NUM_ALLOC
	NUM_FREE
	STRUCTURE

	RADON
	How IDL Implements the Radon Transform
	How IDL Implements the Radon Backprojection
	Array
	BACKPROJECT
	DOUBLE
	DRHO
	DX
	DY
	GRAY
	LINEAR
	NRHO
	NTHETA
	NX
	NY
	RHO
	RMIN
	THETA
	XMIN
	YMIN

	SAVGOL
	Nleft
	Nright
	Order
	Degree
	DOUBLE

	SOCKET
	Unit
	Host
	Port
	CONNECT_TIMEOUT
	ERROR
	GET_LUN
	RAWIO
	READ_TIMEOUT
	SWAP_ENDIAN
	SWAP_IF_BIG_ENDIAN
	SWAP_IF_LITTLE_ENDIAN
	WIDTH
	WRITE_TIMEOUT
	STDIO

	SPHER_HARM
	Theta
	Phi
	L
	M
	DOUBLE

	SWITCH
	TIMEGEN
	Di
	DAYS
	FINAL
	HOURS
	MINUTES
	MONTHS
	SECONDS
	START
	STEP_SIZE
	UNITS
	YEAR
	See Also

	WV_CWT
	Array
	Family
	Order
	DOUBLE
	DSCALE
	NSCALE
	PAD
	SCALE
	START_SCALE

	WV_DENOISE
	Array
	Family
	Order
	COEFFICIENTS
	CUTOFF
	DENOISE_STATE
	DOUBLE
	DWT_FILTERED
	PERCENT
	THRESHOLD
	WPS_FILTERED

	WV_FN_GAUSSIAN
	Order
	Scale
	N
	DOUBLE
	FREQUENCY
	SPATIAL
	WAVELET

	WV_FN_MORLET
	Order
	Scale
	N
	DOUBLE
	FREQUENCY
	SPATIAL
	WAVELET

	WV_FN_PAUL
	Order
	Scale
	N
	DOUBLE
	FREQUENCY
	SPATIAL
	WAVELET

	XDXF
	Filename
	BLOCK
	GROUP
	MODAL
	SCALE
	TEST
	Using XDXF
	The XDXF Toolbar
	The XDXF Information Dialog

	XPCOLOR
	GROUP

	XPLOT3D
	X
	Y
	Z
	BLOCK
	COLOR
	DOUBLE_VIEW
	GROUP
	LINESTYLE
	MODAL
	NAME
	OVERPLOT
	SYMBOL
	TEST
	THICK
	TITLE
	XRANGE
	YRANGE
	ZRANGE
	XTITLE
	YTITLE
	ZTITLE
	Using XPLOT3D
	The XPLOT3D Toolbar
	Projecting Data onto Plot “Walls”
	Changing the Axis Type

	XROI
	ImageData
	R, G, B
	BLOCK
	FLOATING
	GROUP
	MODAL
	REGIONS_IN
	REGIONS_OUT
	REJECTED
	RENDERER
	ROI_COLOR
	ROI_GEOMETRY
	ROI_SELECT_COLOR
	STATISTICS
	TITLE
	TOOLS
	Using XROI
	The XROI Toolbar
	Importing an Image into XROI
	Changing the Image Color Table
	Changing the ROI Outline Colors
	Viewing ROI Information
	Deleting an ROI
	Example 1
	Example 2

	XVOLUME
	Vol
	BLOCK
	GROUP
	INTERPOLATE
	MODAL
	RENDERER
	REPLACE
	SCALE
	TEST
	XSIZE
	YSIZE
	Using XVOLUME
	The XVOLUME Toolbar

	The XVOLUME Interface
	Image Planes and Contours
	Volume
	Isosurface

	New Objects
	IDLffShape
	Intrinsic Methods
	Overview
	Naming Conventions for a Shapefile
	Major Elements of a Shapefile
	Entities
	Attributes

	Accessing Shapefiles
	Creating New Shapefiles
	Updating Existing Shapefiles
	IDLffShape::AddAttribute
	Name
	Type
	Width
	PRECISION

	IDLffShape::Cleanup
	IDLffShape::Close
	IDLffShape::DestroyEntity
	Entity

	IDLffShape::GetAttributes
	Index
	ALL
	ATTRIBUTE_STUCTURE

	IDLffShape::GetEntity
	Index
	ALL
	ATTRIBUTES

	IDLffShape::GetProperty
	N_ENTITIES
	ENTITY_TYPE
	N_ATTRIBUTES
	ATTRIBUTE_NAMES
	ATTRIBUTE_INFO

	IDLffShape::Init
	Filename
	UPDATE
	ENTITY_TYPE

	IDLffShape::Open
	Filename
	UPDATE
	ENTITY_TYPE

	IDLffShape::PutEntity
	Data

	IDLffShape::SetAttributes
	Index
	Attribute_Num
	Value
	Attributes

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	W
	X

